Notation

Unit 1: Intro

- x, y, z are data inputs/outputs
- A is a matrix (I for identity), b is the right hand side (y is used when the right hand side is the data)
- $i=1, m$ subscript enumerates data (and thus rows of a matrix A)
- f is function of the data
- $\hat{x}, \hat{y}, \hat{z}, \hat{f}, \hat{\varphi}$ are inference/approximation of same variables or functions
- c represents unknown parameters to characterize functions
- $k=1, n$ subscript enumerates c (and thus columns of a matrix A)
- a_{k} is column of A
- Σ_{k} is the sum over all $k, \Pi_{i \neq k}$ is the product over all i not equal to k
- Quadratic Formula slide: uses standard notation for the quadratic formula
- ϕ are basis functions
- θ are pose parameters, φ represents all vertex positions of the cloth mesh
- S are the skinned vertex positions of the body mesh, D is the displacement from the body mesh to the cloth mesh
- u, v are the 2 D texture space coordinate system, n is the (unit) normal direction
- I is 2D RGB image data, ψ interpolates RGB values and converts them to a 3D displacement

Unit 2: Linear Systems

- R^{n} is an n dimensional Cartesian space (e.g. R^{1}, R^{2}, R^{3})
- $a_{i k}$ is the element in row i and column k of A
- A^{T} is the transpose of matrix A, and A^{-1} is its inverse
- $\operatorname{det} A$ is the determinant of A
- \exists is "there exists", and \forall is "for all"
- \hat{e}_{i} are the standard basis vectors, with a 1 in the i-th entry (and 0's elsewhere)
- Gaussian Elimination slides $m_{i k}$ special column, $M_{i k}, L_{i k}$ elimination matrices
- $I_{m x m}$ is a size $m x m$ identity matrix
- U upper triangular matrix, L lower triangular matrix
- \hat{c} transformed version of c
- P permutation matrix (with it own special notation)

Unit 3: Understanding Matrices

- λ eigenvalue (scalar)
- v eigenvector, u right eigenvector (both column vectors)
- α is a scalar
- $i=\sqrt{-1}$ when dealing with complex numbers
- * superscript indicates a complex conjugate (for imaginary numbers)
- $\hat{b}, \tilde{b}, \hat{c}$ perturbed or transformed b, c
- \hat{A}^{-1}, \hat{I} approximate versions of A^{-1}, I
- U, V orthogonal (for SVD)
- u_{k}, v_{k} are columns of U, V
- Σ diagonal (not necessarily square, potentially has zeros on the diagonal)
- σ_{k} singular values (diagonal entries of Σ)

Unit 4: Special Matrices

- v, u column vectors
- $u \cdot v$ or $\langle u, v\rangle$ is the inner product (or dot product) between u and v
- $\langle u, v\rangle_{A}$ is the A weighted inner product
- Λ is a diagonal matrix of eigenvalues
- $l_{i k}$ is an element of L
- \hat{A} is an approximation of A

Unit 5: Iterative Solvers

- q superscript, integer for sequences/iterations (iterative solvers)
- ϵ small number
- t time
- X, V position and velocity
- r, e residual and error (column vectors)
- \hat{r}, \hat{e} are transformed versions of r, e
- s search direction
- α, β are scalars
- \bar{S} column vector (potential search direction)

Unit 6: Local Approximations

- p is an integer for sequences, polynomial degree, order of accuracy
- p ! is p factorial
- h scalar (relatively small)
- f^{\prime} and $f^{\prime \prime}$ one derivative and two derivatives
- $f^{(p)}$ parenthesis (integer) indicates taking p derivatives
- ϕ basis functions
- w weighting function

Unit 7: Curse of Dimensionality

- A, V area and volume
- r radius
- N integer, number of sample points
- \vec{x} vector of data input to a function

Unit 8: Least Squares

- False Statements (first slide): a, b scalars
- D, \widehat{D} diagonal matrices

Unit 9: Basic Optimization

- F system of functions (output is a vector not a scalar)
- ∂ partial derivative
- J Jacobian matrix of all first partial derivatives
- F^{\prime} is the Jacobian of F
- ∇f gradient of scalar function f (Jacobian transposed)
- H matrix of all second partial derivatives of scalar function f (Jacobian of the gradient transposed)
- c^{*} critical point (special value of c)
- Ã matrix
- \tilde{b}, \tilde{c} vectors

Unit 10: Solving Least Squares

- $\hat{\Sigma}$ diagonal invertible matrix (no zeros on the diagonal)
- $I_{n x n}$ stresses the size of the identity as $n x n$
- \hat{b}_{r}, \hat{b}_{z} sub-vectors of \hat{b} of shorter length (r for range, z for zero)
- \hat{Q} orthogonal matrix
- Q, \tilde{Q} are tall matrices with orthonormal columns (subsets of an orthogonal matrix)
- q_{k} column of Q
- R upper triangular matrix
- $r_{i k}$ entry of R
- Householder slides: \hat{v} normal vector, H householder matrix, a column vector

Unit 11: Zero Singular Values

- c_{r}, c_{z} sub-vectors of \hat{c} of shorter length (range and zero abbreviations)
- A^{+}pseudo-inverse of A
- T matrix (for similarity transforms)
- Q^{q} is orthogonal and R^{q} is upper triangular
- Power Method Slides: A^{q} and λ^{q} are A and λ raised to the q power

Unit 12: Regularization

- ϵ is a small positive number
- c^{*} is an initial guess for c
- r used in its geometric series capacity (a scalar)
- D is a diagonal matrix with all positive diagonal entries
- a_{k} is a column of A
- Θ is the angle between two vectors
- θ are pose parameters, φ represents all vertex positions of the face mesh
- C^{*} are 2D curves (vertices connected by line segments) drawn on the image
- C are 3D curves embedded on the 3D geometry, and subsequently projected into the 2D image space

Unit 13: Optimization

- f briefly is allowed to be either vector valued (or stay scalar valued)
- \hat{f} is a (scalar) cost function for optimization
- F is a system of functions (the gradient in the case of optimization)
- \hat{g} is a vector valued function of constraints
- η is a column vector of scalar Lagrange multipliers

Unit 14: Nonlinear Systems

- c^{*} is a point to linearize about
- d is for the standard derivative
- t is an arbitrary (scalar) variable
- $d c$ is a vanishingly small differential (of c)
- Δ finite size difference
- α, β are scalars with $\beta \in[0,1)$
- g scalar function (that determines the line search parameter α)

Unit 15: Root Finding

- \hat{g} is a modified g
- t is search parameter in 1 D , replacing α
- t^{*} is the converged solution
- e is the error
- g^{\prime} is the derivative of g
- \hat{t} is a particular t
- $C \geq 0$ is a scalar
- p integer (power)
- t_{L}, t_{R} interval bounds
- t_{M} interval midpoint

Unit 16: 1D Optimization

- $t_{m i n}, t_{M 1}, t_{M 2}$ more t values
- δ scalar (interval size)
- $\lambda \in(0, .5)$ is a scalar
- $\tau \in(0,1)$ is a scalar
- H_{F} is a $3^{\text {rd }}$ order tensor of $2^{\text {nd }}$ derivatives of F
- $O M G_{\hat{f}}$ is a $3^{\text {rd }}$ order tensor of $3^{\text {rd }}$ derivatives of \hat{f}

Unit 17: Computing Derivatives

- H is the Heaviside function
- \hat{f} is a scalar function to be minimized
- \hat{g} is a vector-valued function of constraints (\hat{g}_{i} is a component of \hat{g})
- \hat{e}_{i} is the i-th standard basis vector
- \hat{n} is a (possibly) high-dimensional unit normal
- $\epsilon>0, b$ are scalars
- e, \log are the usual exponential and logarithmic functions
- C_{1}, C_{2}, C_{3} are different sets of parameters
- f_{1}, f_{2}, f_{3} are different functions
- $X_{1}, X_{2}, X_{3}, X_{4}$ are the data as it is processed through the pipeline
- $X_{\text {target }}$ is the desired final result as the data is processed through the pipeline

Unit 18: Avoiding Derivatives

- \widehat{m} is the integer length of the column vector output of $f(x, y, c)$
- $\tilde{f}(c)$ is a column vector of size $m * \widehat{m}$ that stacks the \widehat{m} outputs of $f\left(x_{i}, y_{i}, c\right)$ for each of the m data points $\left(x_{i}, y_{i}\right)$
- \hat{e}_{k} is the standard basis vector

Unit 19: Descent Methods

- (covered in other units)

Unit 20: Momentum Methods

- t is time
- t_{o}, t_{f} initial and final time
- Δt time step size
- $k_{1}, k_{2}, k_{3}, k_{4}$ intermediate function approximations in RK methods
- \hat{c} intermediate states for TVD RK methods
- λ is a scalar, and represents an eigenvalue
- $X(t), V(t), A(t), F(t), M$ position, velocity, acceleration, force, mass
- v is the velocity of state c in parameter space
- $\alpha, \beta, \hat{\beta}$ are scalars

