Notation

Unit 1: Intro

- *x*, *y*, *z* are data inputs/outputs
- A is a matrix (I for identity), b is the right hand side (y is used when the right hand side is the data)
- i = 1, m subscript enumerates data (and thus rows of a matrix A)
- *f* is function of the data
- \hat{x} , \hat{y} , \hat{z} , \hat{f} , $\hat{\phi}$ are inference/approximation of same variables or functions
- *c* represents unknown parameters to characterize functions
- k = 1, n subscript enumerates c (and thus columns of a matrix A)
- a_k is column of A
- Σ_k is the sum over all k, $\prod_{i \neq k}$ is the product over all i not equal to k
- <u>Quadratic Formula slide</u>: uses standard notation for the quadratic formula
- ϕ are basis functions
- heta are pose parameters, φ represents all vertex positions of the cloth mesh
- *S* are the skinned vertex positions of the body mesh, *D* is the displacement from the body mesh to the cloth mesh
- *u*, *v* are the 2D texture space coordinate system, *n* is the (unit) normal direction
- I is 2D RGB image data, ψ interpolates RGB values and converts them to a 3D displacement

Unit 2: Linear Systems

- Rⁿ is an n dimensional Cartesian space (e.g. R¹, R², R³)
- a_{ik} is the element in row *i* and column *k* of *A*
- A^T is the transpose of matrix A, and A^{-1} is its inverse
- det A is the determinant of A
- ∃ is "there exists", and ∀ is "for all"
- \hat{e}_i are the standard basis vectors, with a 1 in the *i*-th entry (and 0's elsewhere)
- Gaussian Elimination slides m_{ik} special column, M_{ik} , L_{ik} elimination matrices
- I_{mxm} is a size mxm identity matrix
- U upper triangular matrix, L lower triangular matrix
- \hat{c} transformed version of c
- P permutation matrix (with it own special notation)

Unit 3: Understanding Matrices

- λ eigenvalue (scalar)
- v eigenvector, u right eigenvector (both column vectors)
- α is a scalar
- $i = \sqrt{-1}$ when dealing with complex numbers
- * superscript indicates a complex conjugate (for imaginary numbers)
- \hat{b} , \hat{b} , \hat{c} perturbed or transformed b, c
- \hat{A}^{-1} , \hat{I} approximate versions of A^{-1} , I
- U, V orthogonal (for SVD)
- u_k , v_k are columns of U, V
- Σ diagonal (not necessarily square, potentially has zeros on the diagonal)
- σ_k singular values (diagonal entries of Σ)

Unit 4: Special Matrices

- v, u column vectors
- $u \cdot v$ or < u, v > is the inner product (or dot product) between u and v
- $< u, v >_A$ is the A weighted inner product
- Λ is a diagonal matrix of eigenvalues
- l_{ik} is an element of L
- \hat{A} is an approximation of A

Unit 5: Iterative Solvers

- q superscript, integer for sequences/iterations (iterative solvers)
- ϵ small number
- t time
- X, V position and velocity
- r, e residual and error (column vectors)
- \hat{r} , \hat{e} are transformed versions of r, e
- s search direction
- α , β are scalars
- \overline{S} column vector (potential search direction)

Unit 6: Local Approximations

- p is an integer for sequences, polynomial degree, order of accuracy
- p! is p factorial
- h scalar (relatively small)
- f' and f'' one derivative and two derivatives
- $f^{(p)}$ parenthesis (integer) indicates taking p derivatives
- ϕ basis functions
- w weighting function

Unit 7: Curse of Dimensionality

- A, V area and volume
- r radius
- N integer, number of sample points
- \vec{x} vector of data input to a function

Unit 8: Least Squares

- False Statements (first slide): a, b scalars
- D, \hat{D} diagonal matrices

Unit 9: Basic Optimization

- F system of functions (output is a vector not a scalar)
- ∂ partial derivative
- J Jacobian matrix of all first partial derivatives
- F' is the Jacobian of F
- ∇f gradient of scalar function f (Jacobian transposed)
- *H* matrix of all second partial derivatives of scalar function *f* (Jacobian of the gradient transposed)
- c^* critical point (special value of c)
- \tilde{A} matrix
- \tilde{b} , \tilde{c} vectors

Unit 10: Solving Least Squares

- $\hat{\Sigma}$ diagonal invertible matrix (no zeros on the diagonal)
- I_{nxn} stresses the size of the identity as nxn
- \hat{b}_r , \hat{b}_z sub-vectors of \hat{b} of shorter length (r for range, z for zero)
- \hat{Q} orthogonal matrix
- Q, \tilde{Q} are tall matrices with orthonormal columns (subsets of an orthogonal matrix)
- q_k column of Q
- R upper triangular matrix
- r_{ik} entry of R
- Householder slides: \hat{v} normal vector, H householder matrix, a column vector

Unit 11: Zero Singular Values

- c_r , c_z sub-vectors of \hat{c} of shorter length (range and zero abbreviations)
- A^+ pseudo-inverse of A
- T matrix (for similarity transforms)
- Q^q is orthogonal and R^q is upper triangular
- <u>Power Method Slides</u>: A^q and λ^q are A and λ raised to the q power

Unit 12: Regularization

- ϵ is a small positive number
- c^* is an initial guess for c
- r used in its geometric series capacity (a scalar)
- *D* is a diagonal matrix with all positive diagonal entries
- a_k is a column of A
- Θ is the angle between two vectors
- heta are pose parameters, φ represents all vertex positions of the face mesh
- C* are 2D curves (vertices connected by line segments) drawn on the image
- C are 3D curves embedded on the 3D geometry, and subsequently projected into the 2D image space

Unit 13: Optimization

- f briefly is allowed to be either vector valued (or stay scalar valued)
- \hat{f} is a (scalar) cost function for optimization
- F is a system of functions (the gradient in the case of optimization)
- \hat{g} is a vector valued function of constraints
- η is a column vector of scalar Lagrange multipliers

Unit 14: Nonlinear Systems

- c^* is a point to linearize about
- *d* is for the standard derivative
- t is an arbitrary (scalar) variable
- dc is a vanishingly small differential (of c)
- Δ finite size difference
- α, β are scalars with $\beta \in [0,1)$
- g scalar function (that determines the line search parameter α)

Unit 15: Root Finding

- \hat{g} is a modified g
- t is search parameter in 1D, replacing α
- t* is the converged solution
- e is the error
- g' is the derivative of g
- \hat{t} is a particular t
- $C \ge 0$ is a scalar
- p integer (power)
- t_L , t_R interval bounds
- t_M interval midpoint

Unit 16: 1D Optimization

- t_{min}, t_{M1}, t_{M2} more t values
- δ scalar (interval size)
- $\lambda \in (0, .5)$ is a scalar
- $\tau \in (0,1)$ is a scalar
- H_F is a 3rd order tensor of 2nd derivatives of F
- $OMG_{\hat{f}}$ is a 3rd order tensor of 3rd derivatives of \hat{f}

Unit 17: Computing Derivatives

- *H* is the Heaviside function
- \hat{f} is a scalar function to be minimized
- \hat{g} is a vector-valued function of constraints (\hat{g}_i is a component of \hat{g})
- \hat{e}_i is the *i*-th standard basis vector
- \hat{n} is a (possibly) high-dimensional unit normal
- $\epsilon > 0$, *b* are scalars
- e, log are the usual exponential and logarithmic functions
- C₁, C₂, C₃ are different sets of parameters
- f_1, f_2, f_3 are different functions
- X_1, X_2, X_3, X_4 are the data as it is processed through the pipeline
- X_{target} is the desired final result as the data is processed through the pipeline

Unit 18: Avoiding Derivatives

- \widehat{m} is the integer length of the column vector output of f(x, y, c)
- $\hat{f}(c)$ is a column vector of size $m * \hat{m}$ that stacks the \hat{m} outputs of $f(x_i, y_i, c)$ for each of the m data points (x_i, y_i)
- \hat{e}_k is the standard basis vector

Unit 19: Descent Methods

• (covered in other units)

Unit 20: Momentum Methods

- t is time
- t_o , t_f initial and final time
- Δt time step size
- k_1, k_2, k_3, k_4 intermediate function approximations in RK methods
- \hat{c} intermediate states for TVD RK methods
- λ is a scalar, and represents an eigenvalue
- X(t), V(t), A(t), F(t), M position, velocity, acceleration, force, mass
- v is the velocity of state c in parameter space
- α , β , $\hat{\beta}$ are scalars