
Solving Least Squares



Normal Equations

• Let !𝐴 have full column rank, and be size 𝑚𝑥𝑛 with 𝑚 ≥ 𝑛
• Diagonal (nonzero) weighting 𝐴 = 𝐷 !𝐴 does not change the rank/size 
• but changes the answer when 𝐷 ≠ 𝐼 and 𝑚 ≠ 𝑛

• Minimizing 𝑟 ! = 𝑏 − 𝐴𝑐 ! leads to the normal equations 𝐴"𝐴𝑐 = 𝐴"𝑏 for 
the critical point
• Since 𝐴"𝐴 is SPD, 𝐴"𝐴𝑐 = 𝐴"𝑏 has a unique solution obtainable via fast/efficient 

SPD solvers
• When 𝑏 is in the range of 𝐴, the unique solution to 𝐴"𝐴𝑐 = 𝐴"𝑏 makes 𝑟 = 0, 

and thus is also the unique solution to 𝐴𝑐 = 𝑏
• When 𝐴 is square (𝑚 = 𝑛), and full rank, 𝑏 is always in the range of 𝐴



Condition Number for the Normal Equations

• Compare 𝐴 = 𝑈Σ𝑉" and 𝐴"𝐴 = 𝑉𝛴"𝛴𝑉" = 𝑉𝛬𝑉" where 𝛬 = 𝛴"𝛴 is a diagonal 
size 𝑛𝑥𝑛 matrix of singular values squared
• Since the singular values of 𝐴"𝐴 are the square of those in 𝐴, the condition 

number #!"#
#!$%

of 𝐴"𝐴 is also squared (compared to 𝐴)
• Thus, solving the normal equations requires twice the precision (e.g. (10!)" = 10#$)

• It takes twice as much precision to get the same number of significant digits!
• The normal equations are not the preferred approach (unless 𝐴 is extremely well 

conditioned)
• However, (like the SVD) it is a great tool for theoretical purposes 
• Can transform any full rank matrix into an SPD system



Understanding Least Squares

• When	𝐴 = 𝑈Σ𝑉" has	full	column	rank,	Σ = FΣ
0
with	FΣ a	size	𝑛𝑥𝑛 diagonal	

matrix	of	(strictly)	positive	singular	values
• The	0 submatrix is	size	 𝑚 − 𝑛 𝑥𝑛 and	doesn’t	exist	when	𝑚 = 𝑛

• Note:	𝐴"𝐴 = 𝑉 FΣ 0
FΣ
0
𝑉" = 𝑉FΣ!𝑉" and	 𝐴"𝐴 $% = 𝑉FΣ$!𝑉"

• 𝑐 = 𝐴"𝐴 $%𝐴"𝑏 = 𝑉FΣ$!𝑉"𝑉 FΣ 0 𝑈"𝑏 = 𝑉 FΣ$% 0 𝑈"𝑏

• 𝐴𝑐 = 𝑈 FΣ
0
𝑉"𝑉 FΣ$% 0 𝑈"𝑏 = 𝑈 𝐼&'& 0

0 0 𝑈"𝑏

• 𝑟 = 𝑏 − 𝐴𝑐 = 𝑈𝐼('(𝑈"𝑏 − 𝑈
𝐼&'& 0
0 0 𝑈"𝑏 = 𝑈

0 0
0 𝐼 ($& '(($&)

𝑈"b



Recall: Summary (Unit 3)

• The columns of 𝑉 that do not correspond to “nonzero” singular values form an 
orthonormal basis for the null space of 𝐴
• The remaining columns of 𝑉 form an orthonormal basis for the space perpendicular to 

the null space of 𝐴 (parameterizing meaningful inputs)

• The columns of 𝑈 corresponding to “nonzero” singular values form an orthonormal 
basis for the range of 𝐴
• The remaining columns of 𝑈 form an orthonormal basis for the (unattainable) space 

perpendicular to the range of 𝐴

• One can drop the columns of 𝑈 and 𝑉 that do not correspond to “nonzero” singular 
values and still obtain a valid factorization of 𝐴
• One can drop the columns of 𝑈 and 𝑉 that correspond to “smaller” singular values and 

still obtain a reasonable approximation of 𝐴



Understanding Least Squares

• 𝐴 has only 𝑛 singular values
• So, only the first 𝑛 columns of 𝑈 (which has 𝑚 columns) span the range of 𝐴

• Write 
F𝑏+
F𝑏,

= 𝑈"𝑏

• F𝑏+ (which	is	size	𝑛𝑥1)	represents	the	part	of	𝑏 in	the	range	of	𝐴
• F𝑏, (which	is	size	 𝑚 − 𝑛 𝑥1)	represents	the	part	of	𝑏 which	is	orthogonal	to	
the	range	of	𝐴

• Then:		𝑐 = 𝑉FΣ$% F𝑏+ ,		𝐴𝑐 = 𝑈 F𝑏+
0
,	and	𝑟 = 𝑈 0

F𝑏,



Recall: Singular Value Decomposition (Unit 3)

• Factorization of any size 𝑚𝑥𝑛 matrix: 𝐴 = 𝑈𝛴𝑉"

• 𝛴 is 𝑚𝑥𝑛 diagonal with non-negative diagonal entries (called singular values) 
• 𝑈 is 𝑚𝑥𝑚 orthogonal, 𝑉 is 𝑛𝑥𝑛 orthogonal (their columns are called singular 

vectors)
• Orthogonal matrices have orthonormal columns (an orthonormal basis), so their transpose 

is their inverse. They preserve inner products, and thus are rotations, reflections, and 
combinations thereof
• If A has complex entries, then 𝑈 and 𝑉 are unitary (conjugate transpose is their inverse)

• Introduced and rediscovered many times: Beltrami 1873, Jordan 1875, Sylvester 1889, Autonne
1913, Eckart and Young 1936. Pearson introduced principal component analysis (PCA) in 1901, 
which uses SVD. Numerical methods by Chan, Businger, Golub, Kahan, etc.



Orthogonal Matrices and the L2 norm

• An orthogonal F𝑄 has F𝑄 F𝑄" = F𝑄" F𝑄 = 𝐼

• F𝑄𝑟 ! =
F𝑄𝑟 ⋅ F𝑄𝑟 = 𝑟" F𝑄" F𝑄𝑟 = 𝑟"𝑟 = 𝑟 !

• F𝑄"𝑟 ! =
F𝑄"𝑟 ⋅ F𝑄"𝑟 = 𝑟" F𝑄 F𝑄"𝑟 = 𝑟"𝑟 = 𝑟 !

• That is, orthogonal transformations preserve Euclidean distance



Understanding Least Squares

• Since	𝑈 is	orthogonal,	 𝑟 ! = 𝑈 0
6𝑏" !

= 6𝑏" !

• Consider	the	diagonalized	SVD	view	of	𝐴𝑐 = 𝑏 (for	a	full	rank	𝐴):

𝑈𝛴𝑉#𝑐 = 𝑏 or		 6𝛴
0
�̂� =

6𝑏$
6𝑏"

• The	first	block	row	gives	𝑐 = 𝑉 6𝛴%& 6𝑏$ ,	identical	to	the	least	squares	solution

• The	norm	of	the	residual	is	
6𝑏$
6𝑏"

− 6𝛴
0

�̂�
!
= 0

6𝑏" !
= 6𝑏" !,	identical	to	the	

norm	of	the	residual	for	the	least	squares	solution

• The	SVD	approach	gives	the	same	(minimum	residual)	least	squares	solution



Recall: Gram-Schmidt (Unit 5)

• Orthogonalizes a set of vectors
• For each new vector, subtract its (weighted) dot product overlap with all prior 

vectors, making it orthogonal to them
• A-orthogonal Gram-Schmidt simply uses an A-weighted dot/inner product
• Given vector ̅𝑆-, subtract out the A-overlap with 𝑠% to 𝑠-$% so that the resulting 

vector 𝑠- has < 𝑠- , 𝑠 .- >/ = 0 for �̂� ∈ 1,2,⋯ , 𝑞 − 1

• That is, 𝑠- = ̅𝑆- − ∑ .-0%
-$% 1 ̅3&,5'&6(

15'&,5'&6(
𝑠 .- where the two non-normalized 𝑠 .- both 

require division by their norm (and < 𝑠 .- , 𝑠 .- >/= 𝑠 .-
/
!

)

• Proof: < 𝑠- , 𝑠 7- >/= < ̅𝑆- , 𝑠 7- >/ −
1 ̅3&,5)&6(
15)& ,5)&6(

< 𝑠 7- , 𝑠 7- >/= 0



Gram-Schmidt for QR Factorization

• From 𝐴, create a full rank 𝑄 with orthonormal columns
• For each column 𝑎8, subtract the overlap with all prior columns in 𝑄 and make 

the result unit length:

𝑞! =
"'#∑(')*

'+*%"','(' ('('
"'#∑(')*

'+*%"','(' ('(' ,

• Define	𝑟988 =< 𝑎8 , 𝑞98 > for	𝑘 > F𝑘,	and	𝑟88 = 𝑎8 − ∑980%
8$% < 𝑎8 , 𝑞98 > 𝑞98 !

• Then 𝑞8 =
:*$∑+*,-

*.- ++**-+*
+**

, and thus 𝑎8 = 𝑟88𝑞8 + ∑980%
8$% 𝑟988𝑞98 = ∑980%

8 𝑟988𝑞98
• This gives 𝐴 = 𝑄𝑅 where 𝑅 is upper triangular and 𝑄"𝑄 = 𝐼



Gram-Schmidt for QR (an example)

• Example:  𝐴 = 𝑄𝑅 with upper triangular 𝑅

3 −3 3
2
2
2

−1
−1
−3

1
−1
3

2 −3 5

=

3/5 0 0
2/5
2/5
2/5

1/2
1/2
−1/2

1/2
−1/2
−1/2

2/5 −1/2 1/2

5 −5 5
0 2 −4
0 0 2

• Note that 𝑄"𝑄 = 𝐼<'< since the columns of 𝑄 are orthonormal
• However, 𝑄𝑄" ≠ 𝐼='= since 𝑄 is only a subset of an orthogonal matrix



Not Good for Large Matrices

• Gram-Schmidt has too much numerical drift, when used on a large number of
vectors 
• Don’t use Gram-Schmidt to find 𝐴 = 𝑄𝑅

• But it does provide a good conceptual way to think about 𝐴 = 𝑄𝑅



QR Factorization

• Consider 𝐴 = 𝑄𝑅 with upper triangular 𝑅 and 𝑄"𝑄 = 𝐼
• 𝑄 is size 𝑚𝑥𝑛 (just like 𝐴) with 𝑛 orthonormal columns
• Let m𝑄 be the matrix with 𝑚 − 𝑛 orthonormal columns that span the space 

perpendicular to the range of 𝑄
• Then, the size 𝑚𝑥𝑚 matrix F𝑄 = 𝑄 m𝑄 is orthogonal

• 𝑟 ! = F𝑄"𝑟 ! =
𝑄"
m𝑄"

𝑏 − 𝑄𝑅𝑐
!
= 𝑄"𝑏 − 𝑅𝑐

m𝑄"𝑏 !
=

F𝑏> − 𝑅𝑐
F𝑏 ?> !

• Only the first (block) row varies with 𝑐, so 𝑟 ! is minimized by solving 𝑅𝑐 = 𝑄"𝑏
• Then, 𝑟 " = A𝑄%𝑏 " =

D𝑏 &' "

• Since 𝑅 is upper triangular, 𝑅𝑐 = F𝑏> can be solved via back-substitution



Householder Transform

• A unit	normal	�̂� implicitly	defines	a	plane	
orthogonal	to	it
• 𝐻 = 𝐼 − 2�̂��̂�" reflects vectors across that 

plane
• 𝐻𝑎 = 𝑎 − 2(�̂�"𝑎) �̂�

• 𝐻 is orthogonal with 𝐻 = 𝐻" = 𝐻$%

• Don’t form the size 𝑚𝑥𝑚 matrix 𝐻
• Instead, apply it using only �̂�



Householder Transform for QR

• Choose the directions 𝑣8 = 𝑎 − 𝐻𝑎 in order to zero out elements  

• E.g. 𝑣8 =

𝑎%
⋮

𝑎8$%
𝑎8
𝑎8@%
⋮
𝑎&

−

𝑎%
⋮

𝑎8$%
𝛾
0
⋮
0

= �̂�8 − 𝛾�̂�8 where �̂�8 =

0
⋮
0
𝑎8
𝑎8@%
⋮
𝑎&

• 𝐻𝑎 (as a reflection) should be the same length as 𝑎, so 𝛾 = ± �̂�8 !

• Then, 𝑣8 = �̂�8 ± �̂�8 !�̂�8, which is normalized to �̂�8 =
A*
A* /

• For robustness, 𝑣8 = �̂�8 + 𝑆 𝑎8 �̂�8 !�̂�8 where 𝑆 𝑎8 = ±1 is the sign function



Householder Transform (an example)

• Let 𝑎% =
2
1
2

and consider 𝑣8 = �̂�8 + 𝑆 𝑎8 �̂�8 !�̂�8

• Then, �̂�% =
2
1
2

,  𝑣% =
2
1
2

+ 𝑆 2 9
1
0
0

=
5
1
2

,   �̂�% =
%
<B

5
1
2

• Then, 𝐻%𝑎% = 𝑎% − 2 �̂�%
"𝑎% �̂�% =

2
1
2

− 2 %=
<B

%
<B

5
1
2

=
−3
0
0



Householder Transform (another example)

• Let 𝑎! =
6
3
4

and consider 𝑣8 = �̂�8 + 𝑆 𝑎8 �̂�8 !�̂�8

• Then, �̂�! =
0
3
4

,  𝑣! =
0
3
4

+ 𝑆 3 25
0
1
0

=
0
−2
4

,   �̂�! =
%
!B

0
−2
4

• Then, 𝐻!𝑎! = 𝑎! − 2 �̂�!
"𝑎! �̂�! =

6
3
4

− 2 %B
!B

%
!B

0
−2
4

=
6
5
0



Householder Transform for QR

• For each column of 𝐴, construct the Householder transform that zeroes out entries 
below the diagonal

• Then 𝐻-𝐻-%&⋯𝐻!𝐻&𝐴 =
𝑅
0 and 𝐻-𝐻-%&⋯𝐻!𝐻&𝑏 =

6𝑏.
6𝑏 /.

• Apply each 𝐻0 efficiently using Q𝑣1, and remember to apply it to all columns ≥ 𝑘
• It doesn’t affect columns < 𝑘 (because of all the zeros at the top of #𝑣!)

• Note: 𝐻- is required to get zeroes at the bottom of the last column
• Letting 6𝑄# = 𝐻-𝐻-%&⋯𝐻!𝐻& gives 6𝑄#𝐴 = 𝑅

0 or 𝐴 = 6𝑄 𝑅
0

• 𝑟 ! = 6𝑄#𝑟 ! =
6𝑄# 𝑏 − 6𝑄 𝑅

0 𝑐
!
=

6𝑏.
6𝑏 /.

− 𝑅𝑐
0

!
• Solve 𝑅𝑐 = 6𝑏. via back-substitution to minimize 𝑟 ! to a value of 6𝑏 /. !


