# Zero Singular Values

## **Underdetermined** Systems

- Consider drawing a line  $y = c_1 + c_2 x$  through 3 data points
- When the points are colinear, there is a unique solution
- When the points are not colinear, there is a least squares solution
- When the points are co-located (i.e. identical), there are infinite solutions



#### Underdetermined Systems

• The Vandermonde matrix equation is

$$\begin{pmatrix} 1 & x_1 \\ 1 & x_2 \\ 1 & x_3 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}$$

- Let  $x_1 = x_2 = x_3$ , so that the columns are multiples of each other (and the matrix is rank 1)
- If  $y_1 = y_2 = y_3$ , the right hand side is in the range of the rank 1 columns implying infinite solutions
- Otherwise, the right hand side is not in the range of the columns implying no solutions (toss away the second column and  $c_2$ , then do least squares on  $c_1$ )

## (Careful) Variable Classification

• Consider 
$$\begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 0 \end{pmatrix}$$

0 0.

• The first two rows,  $c_1 = 1$  and  $c_1 = 2$ , overdetermine  $c_1$ 

1

- The third row,  $c_2 = 3$ , uniquely determines  $c_2$
- The last row,  $0c_3 = 0$ , leaves  $c_3$  underdetermined with infinite possibilities
- It's often misleading to classify an entire system (as either having a unique solution, no solution, or infinite solutions)
- Rather, one should do the best they can with what has been given
  - E.g. Shouldn't skip dinner because of uncertainties about what time the sun will go down

## Understanding Underdetermined Systems

- Transform Ac = b into  $\Sigma \hat{c} = \hat{b}$  (as usual)
- For each  $\sigma_k \neq 0$ , compute  $\hat{c}_k = \frac{\hat{b}_k}{\sigma_k}$  (as usual)
- When  $\sigma_k = 0$ ,  $\hat{c}_k$  is undefined (moreover, division by a small  $\sigma_k$  is dubious)
- Tall matrices have extra rows with  $0 = \hat{b}_k$  ( $\sigma_k = 0$  rows contribute to this too), and nonzero  $\hat{b}_k$  imply a nonzero residual
- Wide matrices have extra columns of zeros, leaving some  $\hat{c}_k$  undetermined (just like  $\sigma_k = 0$  columns)

## Understanding Underdetermined Systems

• Can write  $U(\hat{\Sigma} \ 0)V^T$  for wide matrices, similar to  $A = U\begin{pmatrix} \Sigma \\ 0 \end{pmatrix}V^T$  for tall matrices • In general,  $\hat{\Sigma}$  may contain zeros on the diagonal (for tall matrices too, if not full rank) • For any matrix, can write  $A = U\begin{pmatrix} \hat{\Sigma} & 0 \\ 0 & 0 \end{pmatrix}V^T$  with  $\hat{\Sigma}$  diagonal and full rank • Then,  $\hat{\Sigma}\hat{c} = \hat{b}$  has the form  $\begin{pmatrix} \hat{\Sigma} & 0 \\ 0 & 0 \end{pmatrix}\begin{pmatrix} \hat{c}_r \\ \hat{c}_z \end{pmatrix} = \begin{pmatrix} \hat{b}_r \\ \hat{b}_z \end{pmatrix}$ 

- $\|r\|_2 = \|U^T(b Ac)\|_2 = \left\| \begin{pmatrix} \hat{b}_r \\ \hat{b}_z \end{pmatrix} \begin{pmatrix} \hat{\Sigma} & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} \hat{c}_r \\ \hat{c}_z \end{pmatrix} \right\|_2 = \left\| \begin{pmatrix} \hat{b}_r \\ \hat{b}_z \end{pmatrix} \begin{pmatrix} \hat{\Sigma} \hat{c}_r \\ 0 \end{pmatrix} \right\|_2$
- Thus, solving  $\hat{\Sigma}\hat{c}_r = \hat{b}_r$  for  $\hat{c}_r$  minimizes the residual to  $||r||_2 = ||\hat{b}_z||_2$
- Meanwhile, any values are acceptable for the non-determined  $\hat{c}_z$

## Minimum Norm Solution

- Setting  $\hat{c}_z = 0$  stresses that these parameters have no bearing on the solution
- This is more sensical than setting  $\hat{c}_z$  to some nonzero value as if those values mattered
- Example:
  - Consider a variable related to how a hat is worn while driving, which could matter when the hat blocks the sun or keeps longer hair away from the eyes
  - Someone with short hair driving at night would likely have no driving dependence on a hat; in this case, reporting information about hats is misleading

• So, 
$$\mathbf{c} = V\hat{c} = V\left(\hat{c}_{r}\right) = V\left(\hat{\Sigma}^{-1}\hat{b}_{r}\right) = \sum_{\sigma_{k}\neq 0} \nu_{k} \frac{\hat{b}_{k}}{\sigma_{k}} = \sum_{\sigma_{k}\neq 0} \nu_{k} \frac{u_{k}^{T}b}{\sigma_{k}}$$

#### Pseudo-Inverse

- The minimum norm solution is  $c = \left(\sum_{\sigma_k \neq 0} \frac{v_k u_k^T}{\sigma_k}\right) b = A^+ b$  where the pseudo-inverse is  $A^+ = \sum_{\sigma_k \neq 0} \frac{v_k u_k^T}{\sigma_k}$
- When A is square and full rank  $A^+ = A^{-1}$

- Each term is an outer product between corresponding columns of U and V, weighted by one over their corresponding singular value
- Each term is a size nxm matrix, so this a sum of matrices

#### Sum of Rank One Matrices

• 
$$Ac = U\begin{pmatrix} \hat{\Sigma} & 0\\ 0 & 0 \end{pmatrix} V^T c = U\begin{pmatrix} \hat{\Sigma} & 0\\ 0 & 0 \end{pmatrix}\begin{pmatrix} \hat{c}_r\\ \hat{c}_z \end{pmatrix} = U\begin{pmatrix} \hat{\Sigma}\hat{c}_r\\ 0 \end{pmatrix} = \sum_{\sigma_k \neq 0} u_k \sigma_k \hat{c}_k = \sum_{\sigma_k \neq 0} u_k \sigma_k \hat{v}_k^T c = (\sum_{\sigma_k \neq 0} \sigma_k u_k v_k^T) c$$

- Thus,  $A = \sum_{\sigma_k \neq 0} \sigma_k u_k v_k^T$
- Each term is an outer product between corresponding columns of U and V, weighted by their corresponding singular value
- Each term is a size mxn matrix (the same size as A)
- Each term is rank 1, since every column in the term is a multiple of  $u_k$

## Recall: Understanding Ac (unit 3)



• Ac projects c onto the basis vectors in V, scales by the associated singular values, and uses those results as weights on the basis vectors in U

#### Matrix Approximation

- Use the p largest singular values:  $A \approx \sum_{k=1}^{p} \sigma_{k} u_{k} v_{k}^{T}$
- The pseudo-inverse is approximated similarly:  $A^+ \approx \sum_{k=1}^p \frac{1}{\sigma_k} v_k u_k^T$
- This is the best rank p approximation to A, and the main idea behind principle component analysis (PCA)
  - Often, thousands/millions of terms can be thrown away keeping only 10 to 100 terms
- Can also drop small singular values:  $A \approx \sum_{\sigma_k > \epsilon} \sigma_k u_k v_k^T$
- This makes the pseudo-inverse <u>better conditioned</u>:  $A^+ \approx \sum_{\sigma_k > \epsilon} \frac{1}{\sigma_k} v_k u_k^T$ 
  - This relies on a good choice of  $\epsilon > 0$

### Recall: Approximating A (unit 3)



- The first singular value is much bigger than the second, and so represents the vast majority of what A does (note, the vectors in U and V are unit length)
- Thus, one could <u>approximate</u> A quite well by only using the terms associated with the largest singular value
- This is not a valid factorization, but an approximation (and the idea behind PCA)

#### Rank One Updates

• For real time applications (real time decision making, etc.), iteratively add one term at a time (slowly improving the estimate)

• 
$$c = A^+ b \approx \frac{u_1^T b}{\sigma_1} v_1 + \frac{u_2^T b}{\sigma_2} v_2 + \frac{u_3^T b}{\sigma_3} v_3 + \cdots$$

• Note the efficient ordering of the operations:

- $u_k^T b$  is m multiplies, and the result times  $v_k$  is n multiplies (for a total of m + n multiplies)
- Don't form the size *nxm* matrix!
- Multiplying the size mxn matrix  $v_k u_k^T$  times b is  $m \cdot n$  multiplies

## Computing the SVD

- $A^T A = V \Sigma^T \Sigma V^T$  so  $(A^T A) V = V (\Sigma^T \Sigma)$ •  $A A^T = U \Sigma \Sigma^T U^T$  so  $(A A^T) U = U (\Sigma \Sigma^T)$
- If  $\sigma_k \neq 0$ , then  $\sigma_k^2$  is an eigenvalue of both  $A^T A$  and  $AA^T$  (with eigenvectors  $v_k$  and  $u_k$  respectively)
- Work with the smaller of  $A^T A$  and  $AA^T$  (which are both SP(S)D) to find the eigenvalues  $\sigma_k^2$
- Then,  $\sigma_k^2$  can be used in both  $A^T A$  and  $AA^T$  to find the corresponding eigenvectors

#### Finding Eigenvectors from Eigenvalues

- Given an eigenvalue  $\lambda$ , form the matrix  $\hat{A} \lambda I$
- If  $\hat{A}$  is symmetric, then  $\hat{A} \lambda I$  is symmetric
- $\hat{A} \lambda I$  has (at least) a rank 1 null space (from the definition of eigenvalues)
- Solve the linear system  $(\hat{A} \lambda I)v = 0$  to find the eigenvector v

## **Condition Number of Eigenproblems**

- The condition number for finding an eigenvalue is different than the condition number for solving a linear system
- The condition number for finding an eigenvalue/eigenvector pair is  $\frac{1}{v_L^T v_R}$  where  $v_L$ and  $v_R$  are the normalized left and right eigenvectors
- <u>Symmetric</u> (Hermitian) matrices have identical left and right eigenvectors; so,  $v_L^T v_R = 1$  and the condition number is 1

#### Characteristic Polynomial

- The eigenvalue problem is typically written as  $\hat{A}v = \lambda v$
- Alternatively,  $(\hat{A} \lambda I)v = 0$  implying that  $\hat{A} \lambda I$  is singular
- Setting det $(\hat{A} \lambda I) = 0$  leads to a degree *n* characteristic polynomial equation in  $\lambda$  (for a size *nxn* matrix  $\hat{A}$ )
- Finding the roots of this polynomial equation can be quite difficult
  - Recall how difficult it was to find roots for a mere cubic equation
- Finding roots for degree n > 3 polynomals is undesirable!

# Similarity Transforms

- Similarity transforms, which look like  $T^{-1}\hat{A}T$ , preserve the eigenstructure
  - $T^{-1}\hat{A}Tv = \lambda v$  or  $\hat{A}(Tv) = \lambda(Tv)$  still has eigenvalue  $\lambda$  with a modified eigenvector Tv
- When is <u>real and symmetric</u> (complex and Hermitian), there exists an orthogonal (unitary) T that makes T<sup>-1</sup>ÂT diagonal with real eigenvalues
  e.g. T = V for A<sup>T</sup>A = VΣ<sup>T</sup>ΣV<sup>T</sup> and T = U for AA<sup>T</sup> = UΣΣ<sup>T</sup>U<sup>T</sup>
- Other interesting facts:
  - When  $\hat{A}$  has distinct eigenvalues, a T exists to make  $T^{-1}\hat{A}T$  diagonal
  - <u>Schur form</u>: For any (square) matrix, a unitary T exists to make  $T^{-1}\hat{A}T$  upper triangular with eigenvalues on the diagonal
  - Jordan form: Any (square) matrix can be put into a form with eigenvalues on the diagonal and nonzero off-diagonal elements only occurring on the band above the diagonal and only for defective eigenvalues (which are repeated eigenvalues that don't possess a full set of eigenvectors)

#### Similarity Transforms via QR Iteration

- Starting with  $\hat{A}^0 = \hat{A}$
- Compute the factorization  $\hat{A}^q = Q^q R^q$  with orthogonal  $Q^q$
- Then define  $\hat{A}^{q+1} = R^q Q^q$

• Note:  $R^q Q^q = (Q^q)^T Q^q R^q Q^q = (Q^q)^T \hat{A}^q Q^q$  is a similarity transform of  $\hat{A}^q$ 

• When the eigenvalues are distinct,  $\hat{A}^q$  converges to a triangular matrix • When  $\hat{A}$  is symmetric,  $\hat{A}^q$  converges to a diagonal matrix

#### Power Method

- Computes the largest eigenvalue (great for rank 1 updates)
- Start with a  $c^0 \neq 0$ , and iterate  $c^{q+1} = \hat{A}c^q$
- Suppose  $c^0$  is a linear combination of eigenvectors:  $c^0 = \sum_k \alpha_k v_k$

• Then 
$$c^q = \hat{A}^q c^0 = \sum_k \alpha_k \hat{A}^q v_k = \sum_k \alpha_k \lambda_k^q v_k = \lambda_{max}^q \sum_k \alpha_k \left(\frac{\lambda_k}{\lambda_{max}}\right)^q v_k$$

• As 
$$q \to \infty$$
,  $\left(\frac{\lambda_k}{\lambda_{max}}\right)^q \to 0$  for  $\lambda_k < \lambda_{max}$ ; so,  $c^q \to \lambda_{max}^q \alpha_{max} v_{max}$   
• As  $q \to \infty$ ,  $\frac{(c^{q+1})_i}{(c^q)_i} \to \frac{\lambda_{max}^{q+1} \alpha_{max}(v_{max})_i}{\lambda_{max}^q \alpha_{max}(v_{max})_i} = \lambda_{max}$  for every component *i* of *c*

<u>Deflation</u> removes an eigenvalue from by subtracting off its rank 1 update
 The deflated A<sup>T</sup>A - σ<sub>k</sub><sup>2</sup>v<sub>k</sub>v<sub>k</sub><sup>T</sup> or AA<sup>T</sup> - σ<sub>k</sub><sup>2</sup>u<sub>k</sub>u<sub>k</sub><sup>T</sup> can then be used to compute the next largest eigenvalue (repeatedly)

## Power Method

- If  $c^0 = \sum_k \alpha_k v_k$  happens to have  $\alpha_{max} = 0$ , the method might fail (but roundoff errors can help)
- c<sup>q</sup> needs to be periodically renormalized to stop it from growing too large
- When  $c^0$  and  $\hat{A}$  are real valued, cannot obtain complex numbers
- When the largest eigenvalue is repeated, one needs to determine a basis for the multiple associated eigenvectors
- <u>Inverse Iteration</u> can be used to find the smallest eigenvalue of  $\hat{A}$ , since the largest eigenvalue of  $\hat{A}^{-1}$  is the smallest eigenvalue of  $\hat{A}$ 
  - $c^{q+1} = \hat{A}^{-1}c^q$  is updated by solving  $\hat{A}c^{q+1} = c^q$  to find  $c^{q+1}$

• Useful for finding the condition number  $\frac{\sigma_{max}}{\sigma_{min}}$