
Zero Singular Values



Underdetermined Systems

• Consider drawing a line 𝑦 = 𝑐! + 𝑐"𝑥 through 3 data points
• When the points are colinear, there is a unique solution
• When the points are not colinear, there is a least squares solution
• When the points are co-located (i.e. identical), there are infinite solutions



Underdetermined Systems

• The Vandermonde matrix equation is  
1 𝑥!
1 𝑥"
1 𝑥#

𝑐!
𝑐" =

𝑦!
𝑦"
𝑦#

• Let 𝑥! = 𝑥" = 𝑥#, so that the columns are multiples of each other (and the 
matrix is rank 1)
• If 𝑦! = 𝑦" = 𝑦#, the right hand side is in the range of the rank 1 columns implying 

infinite solutions
• Otherwise, the right hand side is not in the range of the columns implying no 

solutions (toss away the second column and 𝑐", then do least squares on 𝑐!)



(Careful) Variable Classification

• Consider 

1 0 0
1 0 0
0
0

1
0

0
0

𝑐!
𝑐"
𝑐#

=
1
2
3
0

• The first two rows, 𝑐! = 1 and 𝑐! = 2, overdetermine 𝑐!
• The third row, 𝑐" = 3, uniquely determines 𝑐"
• The last row, 0𝑐# = 0, leaves 𝑐# underdetermined with infinite possibilities

• It’s often misleading to classify an entire system (as either having a unique 
solution, no solution, or infinite solutions)
• Rather, one should do the best they can with what has been given
• E.g. Shouldn’t skip dinner because of uncertainties about what time the sun will go down



Understanding Underdetermined Systems

• Transform 𝐴𝑐 = 𝑏 into 𝛴�̂� = .𝑏 (as usual)

• For each 𝜎$ ≠ 0, compute �̂�$ =
%&!
'!

(as usual)

• When 𝜎$ = 0, �̂�$ is undefined (moreover, division by a small 𝜎$ is dubious)
• Tall matrices have extra rows with 0 = .𝑏$ (𝜎$ = 0 rows contribute to this too), 

and nonzero .𝑏$ imply a nonzero residual
• Wide matrices have extra columns of zeros, leaving some �̂�$ undetermined (just 

like 𝜎$ = 0 columns)



Understanding Underdetermined Systems

• Can write 𝑈 "𝛴 0 𝑉! for wide matrices, similar to 𝐴 = 𝑈 "𝛴
0
𝑉! for tall matrices

• In general, !Σ may	contain	zeros	on	the	diagonal	(for	tall	matrices	too,	if	not	full	rank)

• For	any	matrix,	can	write	𝐴 = 𝑈 "𝛴 0
0 0

𝑉! with "𝛴 diagonal and full rank

• Then, 𝛴�̂� = "𝑏 has the form 
"𝛴 0
0 0

�̂�"
�̂�#

=
"𝑏"
"𝑏#

• 𝑟 $ = 𝑈!(𝑏 − 𝐴𝑐) $ =
"𝑏"
"𝑏#

− "𝛴 0
0 0

�̂�"
�̂�# $

=
"𝑏"
"𝑏#

− "𝛴�̂�"
0 $

• Thus,	solving	 "𝛴�̂�" = "𝑏" for	�̂�" minimizes	the	residual	to	 𝑟 $ = "𝑏# $
• Meanwhile,	any	values	are	acceptable	for	the	non-determined	�̂�#



Minimum Norm Solution

• Setting �̂�: = 0 stresses that these parameters have no bearing on the 
solution
• This is more sensical than setting �̂�: to some nonzero value as if those 

values mattered
• Example:
• Consider a variable related to how a hat is worn while driving, which could matter 

when the hat blocks the sun or keeps longer hair away from the eyes
• Someone with short hair driving at night would likely have no driving dependence 

on a hat; in this case, reporting information about hats is misleading

• So, 𝑐 = 𝑉�̂� = 𝑉 �̂�;
�̂�:

= 𝑉 &𝛴<= &𝑏;
0

= ∑>!?@𝑣A
!B!
>!
= ∑>!?@𝑣A

C!
"B
>!



Pseudo-Inverse

• The minimum norm solution is  𝑐 = ∑>!?@
D!C!

"

>!
𝑏 = 𝐴E𝑏 where the 

pseudo-inverse is 𝐴E = ∑>!?@
D!C!

"

>!

• When 𝐴 is square and full rank  𝐴E = 𝐴<=

• Each term is an outer product between corresponding columns of 𝑈 and 𝑉, 
weighted by one over their corresponding singular value
• Each term is a size 𝑛𝑥𝑚 matrix, so this a sum of matrices



Sum of Rank One Matrices

• 𝐴𝑐 = 𝑈 .𝛴 0
0 0

𝑉(𝑐 = 𝑈 .𝛴 0
0 0

�̂�)
�̂�*

= 𝑈 .𝛴�̂�)
0

= ∑'!+, 𝑢$𝜎$ �̂�$ =
∑'!+, 𝑢$𝜎$𝑣$

(𝑐 = ∑'!+, 𝜎$𝑢$𝑣$
( 𝑐

• Thus, 𝐴 = ∑'!+, 𝜎$𝑢$𝑣$
(

• Each term is an outer product between corresponding columns of 𝑈 and 𝑉, 
weighted by their corresponding singular value
• Each term is a size 𝑚𝑥𝑛 matrix (the same size as 𝐴)
• Each term is rank 1, since every column in the term is a multiple of 𝑢$



Recall: Understanding 𝐴𝑐 (unit 3)

𝐴𝑐 =
.141 .825 −.420 −.351
.344
.547

.426

.028
.298 .782
.644 −.509

.750 −.371 −.542 .079

25.5 0 0
0
0

1.29
0

0
0

0 0 0

.504 .574 .644
−.761 −.057 .646
.408 −.816 .408

𝑐!
𝑐"
𝑐#

=
.141 .825 −.420 −.351
.344
.547

.426

.028
.298 .782
.644 −.509

.750 −.371 −.542 .079

25.5 0 0
0
0

1.29
0

0
0

0 0 0

𝑣!$𝑐
𝑣"$𝑐
𝑣#$𝑐

=
.141 .825 −.420 −.351
.344
.547

.426

.028
.298 .782
.644 −.509

.750 −.371 −.542 .079

𝜎!𝑣!$𝑐
𝜎"𝑣"$𝑐
𝜎#𝑣#$𝑐
0

= 𝑢!𝜎!𝑣!$𝑐 + 𝑢"𝜎"𝑣"$𝑐 + 𝑢#𝜎#𝑣#$𝑐 + 𝑢%0
• 𝐴𝑐 projects 𝑐 onto the basis vectors in 𝑉, scales by the associated singular values, and uses those results 

as weights on the basis vectors in 𝑈



Matrix Approximation

• Use the 𝑝 largest singular values: 𝐴 ≈ ∑$-!
. 𝜎$𝑢$𝑣$(

• The pseudo-inverse is approximated similarly: 𝐴/ ≈ ∑$-!
. !

'!
𝑣$𝑢$(

• This is the best rank 𝑝 approximation to 𝐴, and the main idea behind principle 
component analysis (PCA)
• Often, thousands/millions of terms can be thrown away keeping only 10 to 100 terms

• Can also drop small singular values: 𝐴 ≈ ∑'!01 𝜎$𝑢$𝑣$
(

• This makes the pseudo-inverse better conditioned: 𝐴/ ≈ ∑'!01
!
'!
𝑣$𝑢$(

• This relies on a good choice of 𝜖 > 0



Recall: Approximating 𝐴 (unit 3)

𝐴 =
1 2 3
4
7

5
8

6
9

10 11 12
≈

.141 .825 −.420 −.351

.344

.547
.426
.028

.298 .782
.644 −.509

.750 −.371 −.542 .079

25.5 0 0
0
0

1.29
0

0
0

0 0 0

.504 .574 .644
−.761 −.057 .646
.408 −.816 .408

• The first singular value is much bigger than the second, and so represents the vast 
majority of what 𝐴 does (note, the vectors in 𝑈 and 𝑉 are unit length)
• Thus, one could approximate 𝐴 quite well by only using the terms associated with the 

largest singular value
• This is not a valid factorization, but an approximation (and the idea behind PCA)



Rank One Updates

• For real time applications (real time decision making, etc.), iteratively add one 
term at a time (slowly improving the estimate)

• 𝑐 = 𝐴/𝑏 ≈ 2"#&
'"
𝑣! +

2$#&
'$
𝑣" +

2%#&
'%
𝑣# +⋯

• Note the efficient ordering of the operations:
• 𝑢#$𝑏 is 𝑚 multiplies, and the result times 𝑣# is 𝑛 multiplies (for a total of 𝑚 + 𝑛 multiplies)
• Don’t form the size 𝑛𝑥𝑚 matrix!
• Multiplying the size 𝑚𝑥𝑛 matrix 𝑣#𝑢#$ times 𝑏 is 𝑚 ⋅ 𝑛 multiplies



Computing the SVD

• 𝐴(𝐴 = 𝑉𝛴(𝛴𝑉( so (𝐴(𝐴)𝑉 = 𝑉 𝛴(𝛴
• 𝐴𝐴( = 𝑈𝛴𝛴(𝑈( so 𝐴𝐴( 𝑈 = 𝑈 𝛴𝛴(

• If 𝜎$ ≠ 0, then 𝜎$" is an eigenvalue of both 𝐴(𝐴 and	𝐴𝐴( (with eigenvectors 𝑣$
and 𝑢$ respectively) 

• Work with the smaller of 𝐴(𝐴 and	𝐴𝐴( (which are both SP(S)D) to find the 
eigenvalues 𝜎$"

• Then, 𝜎$" can be used in both 𝐴(𝐴 and	𝐴𝐴( to find the corresponding 
eigenvectors



Finding Eigenvectors from Eigenvalues

• Given an eigenvalue 𝜆, form the matrix D𝐴 − 𝜆𝐼

• If D𝐴 is symmetric, then D𝐴 − 𝜆𝐼 is symmetric
• D𝐴 − 𝜆𝐼 has (at least) a rank 1 null space (from the definition of eigenvalues)

• Solve the linear system D𝐴 − 𝜆𝐼 𝑣 = 0 to find the eigenvector 𝑣



Condition Number of Eigenproblems

• The condition number for finding an eigenvalue is different than the condition 
number for solving a linear system

• The condition number for finding an eigenvalue/eigenvector pair is !
3&
#3'

where 𝑣4
and 𝑣5 are the normalized left and right eigenvectors

• Symmetric (Hermitian) matrices have identical left and right eigenvectors; so, 
𝑣4(𝑣5 = 1 and the condition number is 1



Characteristic Polynomial

• The eigenvalue problem is typically written as D𝐴𝑣 = 𝜆𝑣
• Alternatively, D𝐴 − 𝜆𝐼 𝑣 = 0 implying that D𝐴 − 𝜆𝐼 is singular
• Setting det D𝐴 − 𝜆𝐼 = 0 leads to a degree 𝑛 characteristic polynomial equation 

in 𝜆 (for a size 𝑛𝑥𝑛 matrix D𝐴)

• Finding the roots of this polynomial equation can be quite difficult
• Recall how difficult it was to find roots for a mere cubic equation

• Finding roots for degree 𝑛 > 3 polynomals is undesirable!



Similarity Transforms

• Similarity transforms, which look like 𝑇%& X𝐴𝑇, preserve the eigenstructure
• 𝑇&! \𝐴𝑇𝑣 = 𝜆𝑣 or \𝐴(𝑇𝑣) = 𝜆(𝑇𝑣) still has eigenvalue 𝜆 with a modified eigenvector 𝑇𝑣

• When X𝐴 is real and symmetric (complex and Hermitian), there exists an orthogonal 
(unitary) 𝑇 that makes 𝑇%& X𝐴𝑇 diagonal with real eigenvalues 
• e.g. 𝑇 = 𝑉 for 𝐴$𝐴 = 𝑉𝛴$𝛴𝑉$ and 𝑇 = 𝑈 for 𝐴𝐴$ = 𝑈𝛴𝛴$𝑈$

• Other interesting facts:
• When \𝐴 has distinct eigenvalues, a 𝑇 exists to make 𝑇&! \𝐴𝑇 diagonal
• Schur form: For any (square) matrix, a unitary 𝑇 exists to make 𝑇&! \𝐴𝑇 upper triangular with 

eigenvalues on the diagonal
• Jordan form: Any (square) matrix can be put into a form with eigenvalues on the diagonal and 

nonzero off-diagonal elements only occurring on the band above the diagonal and only for defective 
eigenvalues (which are repeated eigenvalues that don’t possess a full set of eigenvectors)



Similarity Transforms via QR Iteration

• Starting with D𝐴, = D𝐴
• Compute the factorization D𝐴6 = 𝑄6𝑅6 with orthogonal 𝑄6

• Then define D𝐴6/! = 𝑅6𝑄6

• Note: 𝑅6𝑄6 = 𝑄6 (𝑄6𝑅6𝑄6 = 𝑄6 ( D𝐴6𝑄6 is a similarity transform of D𝐴6

• When the eigenvalues are distinct, D𝐴6 converges to a triangular matrix
• When D𝐴 is symmetric, D𝐴6 converges to a diagonal matrix



Power Method

• Computes the largest eigenvalue (great for rank 1 updates)
• Start with a 𝑐, ≠ 0, and iterate 𝑐6/! = D𝐴𝑐6

• Suppose 𝑐, is a linear combination of eigenvectors: 𝑐, = ∑$ 𝛼$𝑣$
• Then 𝑐6 = D𝐴6𝑐, = ∑$ 𝛼$ D𝐴6𝑣$ = ∑$ 𝛼$𝜆$

6𝑣$ = 𝜆789
6 ∑$ 𝛼$

:!
:()*

6
𝑣$

• As 𝑞 → ∞, :!
:()*

6
→ 0 for 𝜆$ < 𝜆789; so,  𝑐6 → 𝜆789

6 𝛼789𝑣789

• As 𝑞 → ∞,  (<
+,")-
(<+)-

→ :()*
+," >()* 3()* -
:()*
+ >()* 3()* -

= 𝜆789 for every component 𝑖 of 𝑐

• Deflation removes an eigenvalue from D𝐴 by subtracting off its rank 1 update
• The deflated 𝐴$𝐴 − 𝜎#%𝑣#𝑣#$ or 𝐴𝐴$ − 𝜎#%𝑢#𝑢#$ can then be used to compute the next 

largest eigenvalue (repeatedly)



Power Method

• If 𝑐, = ∑$ 𝛼$𝑣$ happens to have 𝛼789 = 0, the method might fail (but roundoff 
errors can help)
• 𝑐6 needs to be periodically renormalized to stop it from growing too large
• When 𝑐, and D𝐴 are real valued, cannot obtain complex numbers
• When the largest eigenvalue is repeated, one needs to determine a basis for the 

multiple associated eigenvectors

• Inverse Iteration can be used to find the smallest eigenvalue of D𝐴, since the 
largest eigenvalue of D𝐴?! is the smallest eigenvalue of D𝐴
• 𝑐&'( = 1𝐴)(𝑐& is updated by solving 1𝐴𝑐&'( = 𝑐& to find 𝑐&'(
• Useful for finding the condition number *!"#

*!$%


