Zero Singular Values

Underdetermined Systems

- Consider drawing a line $y=c_{1}+c_{2} x$ through 3 data points
- When the points are colinear, there is a unique solution
-When the points are not colinear, there is a least squares solution
- When the points are co-located (i.e. identical), there are infinite solutions

Underdetermined Systems

- The Vandermonde matrix equation is $\left(\begin{array}{ll}1 & x_{1} \\ 1 & x_{2} \\ 1 & x_{3}\end{array}\right)\binom{c_{1}}{c_{2}}=\left(\begin{array}{l}y_{1} \\ y_{2} \\ y_{3}\end{array}\right)$
- Let $x_{1}=x_{2}=x_{3}$, so that the columns are multiples of each other (and the matrix is rank 1)
- If $y_{1}=y_{2}=y_{3}$, the right hand side is in the range of the rank 1 columns implying infinite solutions
- Otherwise, the right hand side is not in the range of the columns implying no solutions (toss away the second column and c_{2}, then do least squares on c_{1})

(Careful) Variable Classification

- $\operatorname{Consider}\left(\begin{array}{lll}1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right)\left(\begin{array}{l}c_{1} \\ c_{2} \\ c_{3}\end{array}\right)=\left(\begin{array}{l}1 \\ 2 \\ 3 \\ 0\end{array}\right)$
- The first two rows, $c_{1}=1$ and $c_{1}=2$, overdetermine c_{1}
- The third row, $c_{2}=3$, uniquely determines c_{2}
- The last row, $0 c_{3}=0$, leaves c_{3} underdetermined with infinite possibilities
- It's often misleading to classify an entire system (as either having a unique solution, no solution, or infinite solutions)
- Rather, one should do the best they can with what has been given
- E.g. Shouldn't skip dinner because of uncertainties about what time the sun will go down

Understanding Underdetermined Systems

- Transform $A c=b$ into $\Sigma \hat{c}=\hat{b}$ (as usual)
- For each $\sigma_{k} \neq 0$, compute $\hat{c}_{k}=\frac{\hat{b}_{k}}{\sigma_{k}}$ (as usual)
- When $\sigma_{k}=0, \hat{c}_{k}$ is undefined (moreover, division by a small σ_{k} is dubious)
- Tall matrices have extra rows with $0=\hat{b}_{k}$ ($\sigma_{k}=0$ rows contribute to this too), and nonzero \hat{b}_{k} imply a nonzero residual
- Wide matrices have extra columns of zeros, leaving some \hat{c}_{k} undetermined (just like $\sigma_{k}=0$ columns)

Understanding Underdetermined Systems

- Can write $U\left(\begin{array}{ll}\hat{\Sigma} & 0\end{array}\right) V^{T}$ for wide matrices, similar to $A=U\binom{\hat{\Sigma}}{0} V^{T}$ for tall matrices
- In general, $\hat{\Sigma}$ may contain zeros on the diagonal (for tall matrices too, if not full rank)
- For any matrix, can write $A=U\left(\begin{array}{ll}\hat{\Sigma} & 0 \\ 0 & 0\end{array}\right) V^{T}$ with $\hat{\Sigma}$ diagonal and full rank
- Then, $\Sigma \hat{c}=\hat{b}$ has the form $\left(\begin{array}{ll}\hat{\Sigma} & 0 \\ 0 & 0\end{array}\right)\binom{\hat{c}_{r}}{\hat{c}_{z}}=\binom{\hat{b}_{r}}{\hat{b}_{z}}$
- $\|r\|_{2}=\left\|U^{T}(b-A c)\right\|_{2}=\left\|\binom{\hat{b}_{r}}{\hat{b}_{z}}-\left(\begin{array}{cc}\hat{\Sigma} & 0 \\ 0 & 0\end{array}\right)\binom{\hat{c}_{r}}{\hat{c}_{z}}\right\|_{2}=\left\|\binom{\hat{b}_{r}}{\hat{b}_{z}}-\binom{\hat{\Sigma} \hat{c}_{r}}{0}\right\|_{2}$
- Thus, solving $\hat{\Sigma} \hat{c}_{r}=\hat{b}_{r}$ for \hat{c}_{r} minimizes the residual to $\|r\|_{2}=\left\|\hat{b}_{z}\right\|_{2}$
- Meanwhile, any values are acceptable for the non-determined \hat{c}_{z}

Minimum Norm Solution

- Setting $\hat{c}_{z}=0$ stresses that these parameters have no bearing on the solution
- This is more sensical than setting \hat{c}_{Z} to some nonzero value as if those values mattered
- Example:
- Consider a variable related to how a hat is worn while driving, which could matter when the hat blocks the sun or keeps longer hair away from the eyes
- Someone with short hair driving at night would likely have no driving dependence on a hat; in this case, reporting information about hats is misleading
- So, $c=V \hat{c}=V\binom{\hat{c}_{r}}{\hat{c}_{z}}=V\binom{\hat{\Sigma}^{-1} \hat{b}_{r}}{0}=\sum_{\sigma_{k} \neq 0} v_{k} \frac{\hat{b}_{k}}{\sigma_{k}}=\sum_{\sigma_{k} \neq 0} v_{k} \frac{u_{k}^{T} b}{\sigma_{k}}$

Pseudo-Inverse

- The minimum norm solution is $c=\left(\sum_{\sigma_{k} \neq 0} \frac{v_{k} u_{k}^{T}}{\sigma_{k}}\right) b=A^{+} b$ where the pseudo-inverse is $A^{+}=\sum_{\sigma_{k} \neq 0} \frac{v_{k} u_{k}^{T}}{\sigma_{k}}$
- When A is square and full rank $A^{+}=A^{-1}$
- Each term is an outer product between corresponding columns of U and V, weighted by one over their corresponding singular value
- Each term is a size $n x m$ matrix, so this a sum of matrices

Sum of Rank One Matrices

$\cdot A c=U\left(\begin{array}{ll}\hat{\Sigma} & 0 \\ 0 & 0\end{array}\right) V^{T} c=U\left(\begin{array}{ll}\hat{\Sigma} & 0 \\ 0 & 0\end{array}\right)\binom{\hat{c}_{r}}{\hat{c}_{z}}=U\binom{\hat{\Sigma} \hat{c}_{r}}{0}=\sum_{\sigma_{k} \neq 0} u_{k} \sigma_{k} \hat{c}_{k}=$
$\sum_{\sigma_{k} \neq 0} u_{k} \sigma_{k} v_{k}^{T} c=\left(\sum_{\sigma_{k} \neq 0} \sigma_{k} u_{k} v_{k}^{T}\right) c$

- Thus, $A=\sum_{\sigma_{k} \neq 0} \sigma_{k} u_{k} v_{k}^{T}$
- Each term is an outer product between corresponding columns of U and V, weighted by their corresponding singular value
- Each term is a size $m x n$ matrix (the same size as A)
- Each term is rank 1 , since every column in the term is a multiple of u_{k}

Recall: Understanding Ac (unit 3)

$$
\begin{gathered}
A c=\left(\begin{array}{cccc}
.141 & .825 & -.420 & -.351 \\
.344 & .426 & .298 & .782 \\
.547 & .028 & .644 & -.509 \\
.750 & -.371 & -.542 & .079
\end{array}\right)\left(\begin{array}{ccc}
25.5 & 0 & 0 \\
0 & 1.29 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{ccc}
.504 & .574 & .644 \\
-.761 & -.057 & .646 \\
.408 & -.816 & .408
\end{array}\right)\left(\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right) \\
=\left(\begin{array}{cccc}
.141 & .825 & -.420 & -.351 \\
.344 & .426 & .298 & .782 \\
.547 & .028 & .644 & -.509 \\
.750 & -.371 & -.542 & .079
\end{array}\right)\left(\begin{array}{ccc}
25.5 & 0 & 0 \\
0 & 1.29 & 0 \\
0 & 0 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{l}
v_{1}^{T} c \\
v_{2}^{T} c \\
v_{3}^{T} c
\end{array}\right) \\
=\left(\begin{array}{ccc}
.141 & .825 & -.420 \\
.344 & .426 & .298 \\
\sigma_{1} v_{1}^{T} c \\
.547 & .028 & .644 \\
.750 & -.371 & -.542 \\
\sigma_{2} v_{2}^{T} c \\
\sigma_{3} v_{3}^{T} c \\
0
\end{array}\right) \\
\\
=u_{1} \sigma_{1} v_{1}^{T} c+u_{2} \sigma_{2} v_{2}^{T} c+u_{3} \sigma_{3} v_{3}^{T} c+u_{4} 0
\end{gathered}
$$

- Ac projects c onto the basis vectors in V, scales by the associated singular values, and uses those results as weights on the basis vectors in U

Matrix Approximation

- Use the p largest singular values: $A \approx \sum_{k=1}^{p} \sigma_{k} u_{k} v_{k}^{T}$
- The pseudo-inverse is approximated similarly: $A^{+} \approx \sum_{k=1}^{p} \frac{1}{\sigma_{k}} v_{k} u_{k}^{T}$
- This is the best rank p approximation to A, and the main idea behind principle component analysis (PCA)
- Often, thousands/millions of terms can be thrown away keeping only 10 to 100 terms
- Can also drop small singular values: $A \approx \sum_{\sigma_{k}>\epsilon} \sigma_{k} u_{k} v_{k}^{T}$
- This makes the pseudo-inverse better conditioned: $A^{+} \approx \sum_{\sigma_{k}>\epsilon} \frac{1}{\sigma_{k}} v_{k} u_{k}^{T}$
- This relies on a good choice of $\epsilon>0$

Recall: Approximating A (unit 3)

- The first singular value is much bigger than the second, and so represents the vast majority of what A does (note, the vectors in U and V are unit length)
- Thus, one could approximate A quite well by only using the terms associated with the largest singular value
- This is not a valid factorization, but an approximation (and the idea behind PCA)

Rank One Updates

- For real time applications (real time decision making, etc.), iteratively add one term at a time (slowly improving the estimate)
$\cdot c=A^{+} b \approx \frac{u_{1}^{T} b}{\sigma_{1}} v_{1}+\frac{u_{2}^{T} b}{\sigma_{2}} v_{2}+\frac{u_{3}^{T} b}{\sigma_{3}} v_{3}+\cdots$
- Note the efficient ordering of the operations:
- $u_{k}^{T} b$ is m multiplies, and the result times v_{k} is n multiplies (for a total of $m+n$ multiplies)
- Don't form the size $n x m$ matrix!
- Multiplying the size $m x n$ matrix $v_{k} u_{k}^{T}$ times b is $m \cdot n$ multiplies

Computing the SVD

- $A^{T} A=V \Sigma^{T} \Sigma V^{T}$ so $\left(A^{T} A\right) V=V\left(\Sigma^{T} \Sigma\right)$
- $A A^{T}=U \Sigma \Sigma^{T} U^{T}$ so $\left(A A^{T}\right) U=U\left(\Sigma \Sigma^{T}\right)$
- If $\sigma_{k} \neq 0$, then σ_{k}^{2} is an eigenvalue of both $A^{T} A$ and $A A^{T}$ (with eigenvectors v_{k} and u_{k} respectively)
- Work with the smaller of $A^{T} A$ and $A A^{T}$ (which are both SP(S)D) to find the eigenvalues σ_{k}^{2}
- Then, σ_{k}^{2} can be used in both $A^{T} A$ and $A A^{T}$ to find the corresponding eigenvectors

Finding Eigenvectors from Eigenvalues

- Given an eigenvalue λ, form the matrix $\hat{A}-\lambda I$
- If \hat{A} is symmetric, then $\hat{A}-\lambda I$ is symmetric
- $\hat{A}-\lambda I$ has (at least) a rank 1 null space (from the definition of eigenvalues)
- Solve the linear system $(\hat{A}-\lambda I) v=0$ to find the eigenvector v

Condition Number of Eigenproblems

- The condition number for finding an eigenvalue is different than the condition number for solving a linear system
- The condition number for finding an eigenvalue/eigenvector pair is $\frac{1}{v_{L}^{T} v_{R}}$ where v_{L} and v_{R} are the normalized left and right eigenvectors
- Symmetric (Hermitian) matrices have identical left and right eigenvectors; so, $v_{L}^{T} v_{R}=1$ and the condition number is 1

Characteristic Polynomial

- The eigenvalue probtem is typically written as $\hat{A} v=\lambda v$
- Alternatively, $(\hat{A}-\lambda I) v=2$ implying that $\hat{A}-\lambda I$ is singular
- Setting $\operatorname{det}(\hat{A}-\lambda I)=0$ leads to a degree n characteristic polynomial equation in λ (for a size $n x n$ matrix \hat{A})
- Finding the roots of this polyomial equation can be quite difficult
- Recall how difficult it was to find roots for a mere cubic equation
- Finding roots for degree $n>3$ polynomals is undesirable!

Similarity Transforms

- Similarity transforms, which look like $T^{-1} \hat{A} T$, preserve the eigenstructure
- $T^{-1} \hat{A} T v=\lambda v$ or $\hat{A}(T v)=\lambda(T v)$ still has eigenvalue λ with a modified eigenvector $T v$
- When \hat{A} is real and symmetric (complex and Hermitian), there exists an orthogonal (unitary) T that makes $T^{-1} \hat{A} T$ diagonal with real eigenvalues
- e.g. $T=V$ for $A^{T} A=V \Sigma^{T} \Sigma V^{T}$ and $T=U$ for $A A^{T}=U \Sigma \Sigma^{T} U^{T}$
- Other interesting facts:
- When \hat{A} has distinct eigenvalues, a T exists to make $T^{-1} \hat{A} T$ diagonal
- Schur form: For any (square) matrix, a unitary T exists to make $T^{-1} \hat{A} T$ upper triangular with eigenvalues on the diagonal
- Jordan form: Any (square) matrix can be put into a form with eigenvalues on the diagonal and nonzero off-diagonal elements only occurring on the band above the diagonal and only for defective eigenvalues (which are repeated eigenvalues that don't possess a full set of eigenvectors)

Similarity Transforms via QR Iteration

- Starting with $\hat{A}^{0}=\hat{A}$
- Compute the factorization $\hat{A}^{q}=Q^{q} R^{q}$ with orthogonal Q^{q}
- Then define $\hat{A}^{q+1}=R^{q} Q^{q}$
- Note: $R^{q} Q^{q}=\left(Q^{q}\right)^{T} Q^{q} R^{q} Q^{q}=\left(Q^{q}\right)^{T} \hat{A}^{q} Q^{q}$ is a similarity transform of \hat{A}^{q}
- When the eigenvalues are distinct, \hat{A}^{q} converges to a triangular matrix
- When \hat{A} is symmetric, \hat{A}^{q} converges to a diagonal matrix

Power Method

- Computes the largest eigenvalue (great for rank 1 updates)
- Start with a $c^{0} \neq 0$, and iterate $c^{q+1}=\hat{A} c^{q}$
- Suppose c^{0} is a linear combination of eigenvectors: $c^{0}=\sum_{k} \alpha_{k} v_{k}$
- Then $c^{q}=\hat{A}^{q} c^{0}=\sum_{k} \alpha_{k} \hat{A}^{q} v_{k}=\sum_{k} \alpha_{k} \lambda_{k}^{q} v_{k}=\lambda_{\max }^{q} \sum_{k} \alpha_{k}\left(\frac{\lambda_{k}}{\lambda_{\max }}\right)^{q} v_{k}$
- As $q \rightarrow \infty,\left(\frac{\lambda_{k}}{\lambda_{\max }}\right)^{q} \rightarrow 0$ for $\lambda_{k}<\lambda_{\max }$; so, $c^{q} \rightarrow \lambda_{\max }^{q} \alpha_{\max } v_{\max }$
- As $q \rightarrow \infty, \frac{\left(c^{q+1}\right)_{i}}{\left(c^{q}\right)_{i}} \rightarrow \frac{\lambda_{\max }^{q+1} \alpha_{\max }\left(v_{\max }\right)_{i}}{\lambda_{\max }^{q} \alpha_{\max }\left(v_{\max }\right)_{i}}=\lambda_{\max }$ for every component i of c
- Deflation removes an eigenvalue from \hat{A} by subtracting off its rank 1 update
- The deflated $A^{T} A-\sigma_{k}^{2} v_{k} v_{k}^{T}$ or $A A^{T}-\sigma_{k}^{2} u_{k} u_{k}^{T}$ can then be used to compute the next largest eigenvalue (repeatedly)

Power Method

- If $c^{0}=\sum_{k} \alpha_{k} v_{k}$ happens to have $\alpha_{\text {max }}=0$, the method might fail (but roundoff errors can help)
- c^{q} needs to be periodically renormalized to stop it from growing too large
- When c^{0} and \hat{A} are real valued, cannot obtain complex numbers
- When the largest eigenvalue is repeated, one needs to determine a basis for the multiple associated eigenvectors
- Inverse Iteration can be used to find the smallest eigenvalue of \hat{A}, since the largest eigenvalue of \hat{A}^{-1} is the smallest eigenvalue of \hat{A}
- $c^{q+1}=\hat{A}^{-1} c^{q}$ is updated by solving $\hat{A} c^{q+1}=c^{q}$ to find c^{q+1}
- Useful for finding the condition number $\frac{\sigma_{\max }}{\sigma_{\min }}$

