Regularization



Adding the |dentity

* Add Ic = 0 to drive components related to small/zero singular values to zero
* Motivated by minimal norm solution

 Combine with the original system (’;1) C = (g) so that (A

I) has full column rank

* Can be solved with Householder, etc.
* Normal equations: (4T ) (';l) ei=4(AT: =) (g) or (ATA+1)c =A"b
eUse A=UXVT toget VETXVT + Dc =VETh or CTX + 1)¢ = sz
e Use X = (f 0) to get ((ST O) (2 0) + I) (C}) = (ET O) <lf">
0 O 0 0/\0 O Cz 0 0/\b,

= . 25
* Then (2 0) + 1 (C;T) = (Zbr), which gives ¢, = 0 as desired
0 O Cz 0



Perturbation

i 5 xR
* However, (2 0) = (C;T) = (Zbr) perturbs the equations for the ¢, terms
0 O Cy 0
as well

1

A N = . R O- P
* Instead of the usual ¢, = a_bk’ the new solution is ¢;, = Jzil by,
k i

* This perturbs these ¢, away from their correct (unique or least squares) solution
* Adding Ic = 0 interferes with Ac = b for the ¢, with g, # 0

1 . .
* For larger g, > 1, G;’fl N and the perturbation of the (unique or least
i k

squares) solution is negligible

* For o3, = 1, the perturbation is quite large

o : - A
* For o, < 1, azil ~ ( drives the associated ¢; towards zero
i




Regularization

* Adding elc = 0 (with € > 0) instead of Ic = 0, that is (:11) Gir (8)

e Normal equations: (4T ¢]) (;4]) ci=lAT ) (8) or (ATA+ e?c=A"b

it " i
e This results in a modified (Z 0) + e4] (?A) = (Zb’")
0O O Cy 0

1

N ™ . . N o-
* Instead of the usual ¢;, = a_bk’ the new solution is ¢;, = szez by,
k i

N

* This has limited effect on g3, > €

* This helps to stabilize/regularize the solution for g;, = € and g3, < €
e driving the associated ¢, towards zero



A Nonzero Initial Guess

e Can view setting Ic = 0 as guessing a solution of ¢ = 0
* Instead, suppose one had an initial guess of c = ¢~

* Add Ic = c* to the equations to get: (/11) i (b)

*

c
* Normal equations: (ATA +1)c = A"b + ¢*

* This leads to (ZTX + 1)6 =J3Th 4+ Vic* =3"h+ ¢
Ok 1
ak+1
tends towards ¢, for smaIIer ak (with &, = ¢, for any g, = 0)
2

by + Cr

O'k+62 k

* Then, ¢, = * tends towards b, for larger g, (as desired) but

e Adding elc = ec” gives C;, = i +62
ik



A Nonzero Initial Guess

: : A FEES T : i
e Rewrite this as & =( k ) k+( - )ck

oi+e? ) ok o +e€2

2 2
X ! _ O € 1
Note the convex weights: (G§+62)+ (013%2) =1

AN

£ B8 : Tl
* This is a convex combination of the (unique or least squares) solution J—k and the
k

initial guess ¢,
* Also valid for an initial guess of ¢;, = 0

* Large g, (03, > €) tend toward the usual solution: ¢, = =
k

* Small gy, (0}, < €) tend toward the initial guess: ¢, = ¢,



An lterative Approach

2 ~
; : A b
* First, solve with eIc = 0 to get ¢, = ( - ) «

oi+e2) oy

* Then, use this solution as an initial guess and solve again to get:

5 O']% by €= O']% bk = O']% by
Cr = D T o B P 1 + 2 O o
0'k+E O O'k+E O'k+6 Ok O'k+6 O'k‘l‘E Ok

* Then, use this solution as an initial guess and solve again to get:
A g 01% b €2 €4 GI% by
8 ogi+€e?) g 0 i 1+ 2 212
k k O'k+E O'k+E O'k+6 O
&2 27N G by
=1+ Bl oty Lo > > >
Oj + € Oj + € Oj + €°) Ok




Convergence

i o - 2N ZiiNe oir \ bk
e Continuing leadsto &, = [ 1 + (ak+62) + (0£+Ez) 4 (GI%JFEZ) 15 (a,§+ez) Ok

2

€

* The geometric series in parenthesis has r = =i
i

i by . iR .
* It converges to — = 0"+E giving ¢, = —= in the limit (as desired)
1-r O'k Ok

* When g3, = 0, the convex weights are 0 and 1, so ¢;, = 0 identically at every step
* This is the desired minimum norm solution for these gy,



Convergence Rate

. o . . 1_ q 7 : i q
* After g iterations, the geometric series sums to . Tr = Gk;ze (1 = ( 26 ) )
= k

e Thic oi o s €~ qB_k. i i Sl
is gives ¢ = 7rez) )5, mplying monotonic convergence to ¢, =
2

e sincer = ( 26 ) < 1 implies r? — 0 monotonicallyas g — o

2
0 t€

* The convergence is quick for large g}, (as desired)
2

€ vt et e
* Smaller g3, have ——— closer to 1, so their ¢, increase more slowly from zero

0'k+62

P

b .
towards J—" (smaller gy, are thus regularized)
k



Comparison with PCA

* After g iterations, PCA incorporates the g largest g;, components into the
solution

* PCA does not include any contribution (at all) for the other components
* Smaller oj, components are Heaviside thresholded to be identically zero

* After g iterations, this iterative approach does not include the full contribution of
the g largest g, components

* ltincludes 1 — rkq times those components, but 1 — rkq ~ 1 when gy, is large

* This iterative approach includes contributions from all components

* The contribution from smaller g;, components is smaller, since their 1 — rkq is not as close

to 1 when gy, is small
* This iterative approach has a significantly smoother fall-off as g5, decreases




Aside

* This iterative method and the analysis via a geometric series (slides 7-10) were
derived in preparation for the Winter 2019 offering of this course

* Hyde, D., Bao, M., and Fedkiw, R., "On Obtaining Sparse Semantic Solutions for Inverse
Problems, Control, and Neural Network Training", J. Comp. Phys. 443, 110498 (2021).

* The non-iterative version of the method is a version of Levenberg-Marquardt



Adding a Diagonal Matrix

* Adding Dc = 0 to obtain: (g) Fi= (8) drives some variables more strongly
towards zero than others
 The normal equations are (ATA + D?)c = ATb

e Equivalently (VETZVT + D?)c =VETh or (ZTX +VTD2V)é = XTh

* These normal equations can also be derived starting from (DZV) € = (8)

* Unfortunately, D shears the vectors in I/ creating issues

_1 o
* This motivates first column scaling (ADI )DC == (8) to obtain an (‘;1) e (g)

that can be treated in the original way (by adding I¢ = 0)



Recall: Matrix Columns as Vectors (unit 1)

* Let the k-th column of A be vector a;, so Ac = y is equivalentto )., cyay =y

* Find a linear combination of the columns of A that gives the right hand side
vector y

A
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An Example

* Determine ¢; and ¢, such that c;a; + c,a, = borAc =0>




* Since a, and a, are not parallel, there is a unique solution
* However, this solution overshoots b by quite a bit, and then backtracks

Overshooting
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Regularization/Damping

e Adding regularization of Ic = 0 damps both components of the solution

— 144
CA7




Smarter Regularization

* Adding regularization of (8 (1)) ¢ = 0 only damps ¢, and allows ¢, a, to estimate
b unhindered

?
— (144

CA7




Coordinate Descent

e Coordinate Descent looks at one vector at a time

* After making good progress with a4, there is little advantage to using a,

— (1
CA7




Geometric Approaches

* Thinking geometrically avoids issues with the rank of A

* Other concerns may be more important:

* Use as few columns as possible - Setting many c¢;, to zero gives a sparser
solution (which is easier to glean semantic information from)

 Correlation - Columns more parallel to b may be more relevant than those
that are more perpendicular

* Gains - Columns that have a large dot product with b’s direction make more
progress towards b with smaller ¢, values (more minimal solution norm)




Correlation vs. Gains

 Consider a;, - b = ||ai ||, |||, cos ® where ® measures how parallel a; and b are

* Correlation preference uses the columns a; with a larger cos 0, i.e. columns that
point more closely in the same direction as b

* When the ¢, represent actions, the goal of minimizing action (gains) leads to a
preference for smaller ¢y

e similar in spirit to Ic = 0 or minimum norm solutions

* Then, columns that make more progress in the direction of b are preferable

: Y7L e ! . b
* Progress in the direction of b is measured via a;, ez or lax ||, cos®
2



Facial Animation

* Create a procedural skinning
model of a face, where (input)
animation parameters 0 lead to a
3D position (output) for every
vertex of the face mesh ¢ (6)

* E.g. in blend shape systems, each
component of 8 corresponds to a
different expression (or sub-
expression), and setting multiple
components to be nonzero mixes
expressions

®(61) @ (62)



Facial Tracking

* On the 3D model, embed (red)
curves around the eyes/mouth
that move with the 3D surface as
it deforms

* Draw similar (blue) curves on a 2D
RGB image of the actual face

* Goal: projection of the red curves
(onto the image plane) should
overlap the blue curves (giving an
estimate of 0 for the 2D RGB

2D RGB Image 3D model image)




Facial Tracking

* The blue curves are data C”

* The projection of the red curves C
is a function of the 3D geometry
@, which in turn is a function of
the animation parameters 6, i.e.

C(p(0))

* Determine 6 that minimizes the
difference ||C(g0(0)) — C*
between the curves

2D RGB Image 3D model



Solving for the Animation Parameters

* This nonlinear problem can be solved via optimization
* At every step of optimization, the problem is linearized

* Solving the resulting linear system Ac = b gives a search
direction, which is used to make progress towards the
solution

* The optimization performs poorly
without regularization

* The resulting 6 values are wild and
arbitrary (as seen in the figure)

* The curves provide too little data for
the optimization to work well

P

No regularization




L2 Regularization

* Adding Ic = 0O to the linearized problem at every iteration
has the expected result:

* The regularized problem is much more solvable, and the results
are less noisy

* However, 0 is overly damped (as seen in the figure)

* Also, a large number of animation
parameters 6 are nonzero, even for
this is relatively simple expression

* This hinders the interpretability
(semantics) of 6

L2 regularization



“Soft L1” Regularization

* There are many options for regularization

* In particular, “soft L1” typically produces a sparser set of
solution parameters than L2 regularization (see figure)

* A sparser solution allows one to better ascertain semantic
meaning from the animation parameters 6

e But, 0 is still overly damped

Soft L1 regularization



A Geometric Approach (Column Space Search)

* The column space search gives a sparse set of solution
parameters with significantly less damping

* This allows one to better ascertain semantic meaning
from the animation parameters 6

Column Space Search



