Regularization

Adding the Identity

- Add $I c=0$ to drive components related to small/zero singular values to zero
- Motivated by minimal norm solution
- Combine with the original system $\binom{A}{I} c=\binom{b}{0}$ so that $\binom{A}{I}$ has full column rank
- Can be solved with Householder, etc.
- Normal equations: (A^{T}

$$
\text { I) }\binom{A}{I} c=\left(\begin{array}{ll}
A^{T} & I
\end{array}\right)\binom{b}{0} \text { or }\left(A^{T} A+I\right) c=A^{T} b
$$

- Use $A=U \Sigma V^{T}$ to get $\left(V \Sigma^{T} \Sigma V^{T}+I\right) c=V \Sigma^{T} \hat{b}$ or $\left(\Sigma^{T} \Sigma+I\right) \hat{c}=\Sigma^{T} \hat{b}$
- Use $\Sigma=\left(\begin{array}{ll}\hat{\Sigma} & 0 \\ 0 & 0\end{array}\right)$ to get $\left(\left(\begin{array}{cc}\hat{\Sigma}^{T} & 0 \\ 0 & 0\end{array}\right)\left(\begin{array}{ll}\hat{\Sigma} & 0 \\ 0 & 0\end{array}\right)+I\right)\binom{\hat{c}_{r}}{\hat{c}_{z}}=\left(\begin{array}{cc}\hat{\Sigma}^{T} & 0 \\ 0 & 0\end{array}\right)\binom{\hat{b}_{r}}{\hat{b}_{z}}$
- Then $\left(\left(\begin{array}{cc}\hat{\Sigma}^{2} & 0 \\ 0 & 0\end{array}\right)+I\right)\binom{\hat{c}_{r}}{\hat{c}_{Z}}=\binom{\hat{\Sigma} \hat{b}_{r}}{0}$, which gives $\hat{c}_{Z}=0$ as desired

Perturbation

- However, $\left(\left(\begin{array}{cc}\hat{\Sigma}^{2} & 0 \\ 0 & 0\end{array}\right)+I\right)\binom{\hat{c}_{r}}{\hat{c}_{z}}=\binom{\hat{\Sigma} \hat{b}_{r}}{0}$ perturbs the equations for the \hat{c}_{r} terms as well
- Instead of the usual $\hat{c}_{k}=\frac{1}{\sigma_{k}} \hat{b}_{k}$, the new solution is $\hat{c}_{k}=\frac{\sigma_{k}}{\sigma_{k}^{2}+1} \hat{b}_{k}$
- This perturbs these \hat{c}_{k} away from their correct (unique or least squares) solution
- Adding $I c=0$ interferes with $A c=b$ for the \hat{c}_{k} with $\sigma_{k} \neq 0$
- For larger $\sigma_{k} \gg 1, \frac{\sigma_{k}}{\sigma_{k}^{2}+1} \approx \frac{1}{\sigma_{k}}$ and the perturbation of the (unique or least squares) solution is negligible
- For $\sigma_{k} \approx 1$, the perturbation is quite large
- For $\sigma_{k} \ll 1, \frac{\sigma_{k}}{\sigma_{k}^{2}+1} \approx 0$ drives the associated \hat{c}_{k} towards zero

Regularization

- Adding $\epsilon I c=0$ (with $\epsilon>0$) instead of $I c=0$, that is $\binom{A}{\epsilon I} c=\binom{b}{0}$
- Normal equations: $\left(\begin{array}{ll}A^{T} & \epsilon I\end{array}\right)\binom{A}{\epsilon I} c=\left(\begin{array}{ll}A^{T} & \epsilon I\end{array}\right)\binom{b}{0}$ or $\left(A^{T} A+\epsilon^{2} I\right) c=A^{T} b$
- This results in a modified $\left(\left(\begin{array}{cc}\hat{\Sigma}^{2} & 0 \\ 0 & 0\end{array}\right)+\epsilon^{2} I\right)\binom{\hat{c}_{r}}{\hat{c}_{z}}=\binom{\widehat{\Sigma} \hat{b}_{r}}{0}$
- Instead of the usual $\hat{c}_{k}=\frac{1}{\sigma_{k}} \hat{b}_{k}$, the new solution is $\hat{c}_{k}=\frac{\sigma_{k}}{\sigma_{k}^{2}+\epsilon^{2}} \hat{b}_{k}$
- This has limited effect on $\sigma_{k} \gg \epsilon$
- This helps to stabilize/regularize the solution for $\sigma_{k} \approx \epsilon$ and $\sigma_{k}<\epsilon$
- driving the associated \hat{c}_{k} towards zero

A Nonzero Initial Guess

- Can view setting $I c=0$ as guessing a solution of $c=0$
- Instead, suppose one had an initial guess of $c=c^{*}$
- Add $I c=c^{*}$ to the equations to get: $\binom{A}{I} c=\binom{b}{c^{*}}$
- Normal equations: $\left(A^{T} A+I\right) c=A^{T} b+c^{*}$
- This leads to $\left(\Sigma^{T} \Sigma+I\right) \hat{c}=\Sigma^{T} \hat{b}+V^{T} c^{*}=\Sigma^{T} \hat{b}+\hat{c}^{*}$
- Then, $\hat{c}_{k}=\frac{\sigma_{k}}{\sigma_{k}^{2}+1} \hat{b}_{k}+\frac{1}{\sigma_{k}^{2}+1} \hat{c}_{k}^{*}$ tends towards \hat{b}_{k} for larger σ_{k} (as desired) but tends towards \hat{c}_{k}^{*} for smaller σ_{k} (with $\hat{c}_{k}=\hat{c}_{k}^{*}$ for any $\sigma_{k}=0$)
- Adding $\epsilon I c=\epsilon c^{*}$ gives $\hat{c}_{k}=\frac{\sigma_{k}}{\sigma_{k}^{2}+\epsilon^{2}} \hat{b}_{k}+\frac{\epsilon^{2}}{\sigma_{k}^{2}+\epsilon^{2}} \hat{c}_{k}^{*}$

A Nonzero Initial Guess

- Rewrite this as $\hat{c}_{k}=\left(\frac{\sigma_{k}^{2}}{\sigma_{k}^{2}+\epsilon^{2}}\right) \frac{\hat{b}_{k}}{\sigma_{k}}+\left(\frac{\epsilon^{2}}{\sigma_{k}^{2}+\epsilon^{2}}\right) \hat{c}_{k}^{*}$
- Note the convex weights: $\left(\frac{\sigma_{k}^{2}}{\sigma_{k}^{2}+\epsilon^{2}}\right)+\left(\frac{\epsilon^{2}}{\sigma_{k}^{2}+\epsilon^{2}}\right)=1$
- This is a convex combination of the (unique or least squares) solution $\frac{\hat{b}_{k}}{\sigma_{k}}$ and the initial guess \hat{c}_{k}^{*}
- Also valid for an initial guess of $\hat{c}_{k}^{*}=0$
- Large $\sigma_{k}\left(\sigma_{k} \gg \epsilon\right)$ tend toward the usual solution: $\hat{c}_{k}=\frac{\hat{b}_{k}}{\sigma_{k}}$
- Small $\sigma_{k}\left(\sigma_{k} \ll \epsilon\right)$ tend toward the initial guess: $\hat{c}_{k}=\hat{c}_{k}^{*}$

An Iterative Approach

- First, solve with $\epsilon I c=0$ to get $\hat{c}_{k}=\left(\frac{\sigma_{k}^{2}}{\sigma_{k}^{2}+\epsilon^{2}}\right) \frac{\hat{b}_{k}}{\sigma_{k}}$
- Then, use this solution as an initial guess and solve again to get:

$$
\hat{c}_{k}=\left(\frac{\sigma_{k}^{2}}{\sigma_{k}^{2}+\epsilon^{2}}\right) \frac{\hat{b}_{k}}{\sigma_{k}}+\left(\frac{\epsilon^{2}}{\sigma_{k}^{2}+\epsilon^{2}}\right)\left(\frac{\sigma_{k}^{2}}{\sigma_{k}^{2}+\epsilon^{2}}\right) \frac{\hat{b}_{k}}{\sigma_{k}}=\left(1+\left(\frac{\epsilon^{2}}{\sigma_{k}^{2}+\epsilon^{2}}\right)\right)\left(\frac{\sigma_{k}^{2}}{\sigma_{k}^{2}+\epsilon^{2}}\right) \frac{\hat{b}_{k}}{\sigma_{k}}
$$

- Then, use this solution as an initial guess and solve again to get:

$$
\begin{aligned}
\hat{c}_{k}= & \left(\frac{\sigma_{k}^{2}}{\sigma_{k}^{2}+\epsilon^{2}}\right) \frac{\hat{b}_{k}}{\sigma_{k}}+\left(\frac{\epsilon^{2}}{\sigma_{k}^{2}+\epsilon^{2}}\right)\left(1+\left(\frac{\epsilon^{2}}{\sigma_{k}^{2}+\epsilon^{2}}\right)\right)\left(\frac{\sigma_{k}^{2}}{\sigma_{k}^{2}+\epsilon^{2}}\right) \frac{\hat{b}_{k}}{\sigma_{k}} \\
& =\left(1+\left(\frac{\epsilon^{2}}{\sigma_{k}^{2}+\epsilon^{2}}\right)+\left(\frac{\epsilon^{2}}{\sigma_{k}^{2}+\epsilon^{2}}\right)^{2}\right)\left(\frac{\sigma_{k}^{2}}{\sigma_{k}^{2}+\epsilon^{2}}\right) \frac{\hat{b}_{k}}{\sigma_{k}}
\end{aligned}
$$

Convergence

- Continuing leads to $\hat{c}_{k}=\left(1+\left(\frac{\epsilon^{2}}{\sigma_{k}^{2}+\epsilon^{2}}\right)+\left(\frac{\epsilon^{2}}{\sigma_{k}^{2}+\epsilon^{2}}\right)^{2}+\left(\frac{\epsilon^{2}}{\sigma_{k}^{2}+\epsilon^{2}}\right)^{3}+\cdots\right)\left(\frac{\sigma_{k}^{2}}{\sigma_{k}^{2}+\epsilon^{2}}\right) \frac{\hat{b}_{k}}{\sigma_{k}}$
- The geometric series in parenthesis has $r=\frac{\epsilon^{2}}{\sigma_{k}^{2}+\epsilon^{2}}$
- It converges to $\frac{1}{1-r}=\frac{\sigma_{k}^{2}+\epsilon^{2}}{\sigma_{k}^{2}}$ giving $\hat{c}_{k}=\frac{\hat{b}_{k}}{\sigma_{k}}$ in the limit (as desired)
- When $\sigma_{k}=0$, the convex weights are 0 and 1 , so $\hat{c}_{k}=0$ identically at every step
- This is the desired minimum norm solution for these σ_{k}

Convergence Rate

- After q iterations, the geometric series sums to $\frac{1-r^{q}}{1-r}=\frac{\sigma_{k}^{2}+\epsilon^{2}}{\sigma_{k}^{2}}\left(1-\left(\frac{\epsilon^{2}}{\sigma_{k}^{2}+\epsilon^{2}}\right)^{q}\right)$
- This gives $\hat{c}_{k}=\left(1-\left(\frac{\epsilon^{2}}{\sigma_{k}^{2}+\epsilon^{2}}\right)^{q}\right) \frac{\hat{b}_{k}}{\sigma_{k}}$ implying monotonic convergence to $\hat{c}_{k}=\frac{\hat{b}_{k}}{\sigma_{k}}$
- since $r=\left(\frac{\epsilon^{2}}{\sigma_{k}^{2}+\epsilon^{2}}\right)<1$ implies $r^{q} \rightarrow 0$ monotonically as $q \rightarrow \infty$
- The convergence is quick for large σ_{k} (as desired)
- Smaller σ_{k} have $\frac{\epsilon^{2}}{\sigma_{k}^{2}+\epsilon^{2}}$ closer to 1 , so their \hat{c}_{k} increase more slowly from zero towards $\frac{\hat{b}_{k}}{\sigma_{k}}$ (smaller σ_{k} are thus regularized)

Comparison with PCA

- After q iterations, PCA incorporates the q largest σ_{k} components into the solution
- PCA does not include any contribution (at all) for the other components - Smaller σ_{k} components are Heaviside thresholded to be identically zero
- After q iterations, this iterative approach does not include the full contribution of the q largest σ_{k} components
- It includes $1-r_{k}^{q}$ times those components, but $1-r_{k}^{q} \approx 1$ when σ_{k} is large
- This iterative approach includes contributions from all components
- The contribution from smaller σ_{k} components is smaller, since their $1-r_{k}^{q}$ is not as close to 1 when σ_{k} is small
- This iterative approach has a significantly smoother fall-off as σ_{k} decreases

Aside

- This iterative method and the analysis via a geometric series (slides 7-10) were derived in preparation for the Winter 2019 offering of this course
- Hyde, D., Bao, M., and Fedkiw, R., "On Obtaining Sparse Semantic Solutions for Inverse Problems, Control, and Neural Network Training", J. Comp. Phys. 443, 110498 (2021).
- The non-iterative version of the method is a version of Levenberg-Marquardt

Adding a Diagonal Matrix

- Adding $D c=0$ to obtain: $\binom{A}{D} c=\binom{b}{0}$ drives some variables more strongly towards zero than others
- The normal equations are $\left(A^{T} A+D^{2}\right) c=A^{T} b$
- Equivalently $\left(V \Sigma^{T} \Sigma V^{T}+D^{2}\right) c=V \Sigma^{T} \hat{b}$ or $\left(\Sigma^{T} \Sigma+V^{T} D^{2} V\right) \hat{c}=\Sigma^{T} \hat{b}$
- These normal equations can also be derived starting from $\binom{\Sigma}{D V} \hat{c}=\binom{\hat{b}}{0}$
- Unfortunately, D shears the vectors in V creating issues
- This motivates first column scaling $\binom{A D^{-1}}{I} D c=\binom{b}{0}$ to obtain an $\binom{\tilde{A}}{I} \tilde{c}=\binom{b}{0}$ that can be treated in the original way (by adding $I \tilde{c}=0$)

Recall: Matrix Columns as Vectors (unit 1)

- Let the k-th column of A be vector a_{k}, so $A c=y$ is equivalent to $\sum_{k} c_{k} a_{k}=y$
- Find a linear combination of the columns of A that gives the right hand side vector y

An Example

- Determine c_{1} and c_{2} such that $c_{1} a_{1}+c_{2} a_{2}=b$ or $A c=b$

Overshooting

- Since a_{1} and a_{2} are not parallel, there is a unique solution
- However, this solution overshoots b by quite a bit, and then backtracks

Regularization/Damping

- Adding regularization of $I c=0$ damps both components of the solution

Smarter Regularization

- Adding regularization of $\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right) c=0$ only damps c_{2} and allows $c_{1} a_{1}$ to estimate b unhindered

Coordinate Descent

- Coordinate Descent looks at one vector at a time
- After making good progress with a_{1}, there is little advantage to using a_{2}

Geometric Approaches

- Thinking geometrically avoids issues with the rank of A
- Other concerns may be more important:
- Use as few columns as possible - Setting many c_{k} to zero gives a sparser solution (which is easier to glean semantic information from)
- Correlation - Columns more parallel to b may be more relevant than those that are more perpendicular
- Gains - Columns that have a large dot product with b 's direction make more progress towards b with smaller c_{k} values (more minimal solution norm)

Correlation vs. Gains

- Consider $a_{k} \cdot b=\left\|a_{k}\right\|_{2}\|b\|_{2} \cos \Theta$ where Θ measures how parallel a_{k} and b are
- Correlation preference uses the columns a_{k} with a $\operatorname{larger} \cos \Theta$, i.e. columns that point more closely in the same direction as b
- When the c_{k} represent actions, the goal of minimizing action (gains) leads to a preference for smaller c_{k}
- similar in spirit to $I c=0$ or minimum norm solutions
- Then, columns that make more progress in the direction of b are preferable
- Progress in the direction of b is measured via $a_{k} \cdot \frac{b}{\|b\|_{2}}$ or $\left\|a_{k}\right\|_{2} \cos \Theta$

Facial Animation

- Create a procedural skinning model of a face, where (input) animation parameters θ lead to a 3D position (output) for every vertex of the face mesh $\varphi(\theta)$
- E.g. in blend shape systems, each component of θ corresponds to a different expression (or subexpression), and setting multiple components to be nonzero mixes expressions
$\varphi\left(\theta_{1}\right)$
$\varphi\left(\theta_{2}\right)$

Facial Tracking

2D RGB Image

3D model

- On the 3D model, embed (red) curves around the eyes/mouth that move with the 3D surface as it deforms
- Draw similar (blue) curves on a 2D RGB image of the actual face
- Goal: projection of the red curves (onto the image plane) should overlap the blue curves (giving an estimate of θ for the 2D RGB image)

Facial Tracking

- The blue curves are data C^{*}
- The projection of the red curves C is a function of the 3D geometry φ, which in turn is a function of the animation parameters θ, i.e. $C(\varphi(\theta))$
- Determine θ that minimizes the difference $\left\|C(\varphi(\theta))-C^{*}\right\|$ between the curves

Solving for the Animation Parameters

- This nonlinear problem can be solved via optimization
- At every step of optimization, the problem is linearized
- Solving the resulting linear system $A c=b$ gives a search direction, which is used to make progress towards the solution
- The optimization performs poorly
 without regularization
- The resulting θ values are wild and arbitrary (as seen in the figure)
- The curves provide too little data for the optimization to work well

L2 Regularization

- Adding Ic $=0$ to the linearized problem at every iteration has the expected result:
- The regularized problem is much more solvable, and the results are less noisy
- However, θ is overly damped (as seen in the figure)

- Also, a large number of animation parameters θ are nonzero, even for this is relatively simple expression
- This hinders the interpretability (semantics) of θ

"Soft L1" Regularization

- There are many options for regularization
- In particular, "soft L1" typically produces a sparser set of solution parameters than L2 regularization (see figure)
- A sparser solution allows one to better ascertain semantic meaning from the animation parameters θ

Soft L1 regularization

- But, θ is still overly damped

A Geometric Approach (Column Space Search)

- The column space search gives a sparse set of solution parameters with significantly less damping
- This allows one to better ascertain semantic meaning from the animation parameters θ

