
Regularization



Adding the Identity

• Add 𝐼𝑐 = 0 to drive components related to small/zero singular values to zero
• Motivated by minimal norm solution

• Combine with the original system 𝐴𝐼 𝑐 = 𝑏
0 so that 𝐴𝐼 has full column rank

• Can be solved with Householder, etc.

• Normal equations: 𝐴! 𝐼
𝐴
𝐼 𝑐 = 𝐴! 𝐼 𝑏

0 or 𝐴!𝐴 + 𝐼 𝑐 = 𝐴!𝑏

• Use 𝐴 = 𝑈𝛴𝑉! to get 𝑉𝛴!𝛴𝑉! + 𝐼 𝑐 = 𝑉𝛴! +𝑏 or 𝛴!𝛴 + 𝐼 𝑐̂ = 𝛴! +𝑏

• Use 𝛴 = +𝛴 0
0 0

to get 
+𝛴! 0
0 0

+𝛴 0
0 0

+ 𝐼 𝑐̂"
𝑐̂#

= +𝛴! 0
0 0

+𝑏"
+𝑏#

• Then 
+𝛴$ 0
0 0

+ 𝐼 𝑐̂"
𝑐̂#

= +𝛴+𝑏"
0

, which	gives	𝑐̂# = 0 as	desired



Perturbation

• However, 
+𝛴$ 0
0 0

+ 𝐼 𝑐̂"
𝑐̂#

= +𝛴+𝑏"
0

perturbs the equations for the 𝑐̂𝑟 terms 

as well
• Instead of the usual 𝑐̂& =

'
(!
+𝑏& ,	the new solution is 𝑐̂& =

(!
(!
")'

+𝑏&
• This perturbs these 𝑐̂! away from their correct (unique or least squares) solution
• Adding 𝐼𝑐 = 0 interferes with 𝐴𝑐 = 𝑏 for the 𝑐̂! with 𝜎! ≠ 0

• For larger 𝜎& ≫ 1,		 (!
(!
")'

≈ '
(!

and the perturbation of the (unique or least 
squares) solution is negligible
• For 𝜎& ≈ 1,	the perturbation is quite large
• For 𝜎& ≪ 1,	 (!

(!
")'

≈ 0 drives the associated 𝑐̂& towards zero



Regularization

• Adding	𝜖𝐼𝑐 = 0 (with	𝜖 > 0)	instead	of	𝐼𝑐 = 0,	that	is	 𝐴𝜖𝐼 𝑐 = 𝑏
0

• Normal equations: 𝐴! 𝜖𝐼 𝐴
𝜖𝐼 𝑐 = 𝐴! 𝜖𝐼 𝑏

0 or 𝐴!𝐴 + 𝜖$𝐼 𝑐 = 𝐴!𝑏

• This results in a modified 
+𝛴$ 0
0 0

+ 𝜖$𝐼 𝑐̂"
𝑐̂#

= +𝛴+𝑏"
0

• Instead of the usual 𝑐̂& =
'
(!
+𝑏& ,	the new solution is 𝑐̂& =

(!
(!
")*"

+𝑏&
• This has limited effect on 𝜎& ≫ 𝜖
• This helps to stabilize/regularize the solution for 𝜎& ≈ 𝜖 and 𝜎& < 𝜖
• driving the associated 𝑐̂! towards zero



A Nonzero Initial Guess

• Can view setting 𝐼𝑐 = 0 as guessing a solution of 𝑐 = 0
• Instead, suppose one had an initial guess of 𝑐 = 𝑐∗

• Add 𝐼𝑐 = 𝑐∗ to the equations to get: 𝐴𝐼 𝑐 = 𝑏
𝑐∗

• Normal equations: 𝐴!𝐴 + 𝐼 𝑐 = 𝐴!𝑏 + 𝑐∗

• This leads to 𝛴!𝛴 + 𝐼 𝑐̂ = 𝛴! +𝑏 + 𝑉!𝑐∗ = 𝛴! +𝑏 + 𝑐̂∗

• Then, 𝑐̂& =
(!

(!
")'

+𝑏& +
'

(!
")'

𝑐̂&∗ tends towards +𝑏& for larger 𝜎& (as desired) but 
tends towards 𝑐̂&∗ for smaller 𝜎& (with 𝑐̂& = 𝑐̂&∗ for any 𝜎& = 0)

• Adding 𝜖𝐼𝑐 = 𝜖𝑐∗ gives 𝑐̂& =
(!

(!
")*"

+𝑏& +
*"

(!
")*"

𝑐̂&∗



A Nonzero Initial Guess

• Rewrite this as 𝑐̂& =
(!
"

(!
")*"

,-!
(!
+ *"

(!
")*"

𝑐̂&∗

• Note the convex weights: "!
"

"!
"#$" + $"

"!
"#$" = 1

• This is a convex combination of the (unique or least squares) solution 
,-!
(!

and the 
initial guess 𝑐̂&∗
• Also valid for an initial guess of 𝑐̂!∗ = 0

• Large 𝜎& (𝜎& ≫ 𝜖) tend toward the usual solution: 𝑐̂& =
,-!
(!

• Small 𝜎& (𝜎& ≪ 𝜖) tend toward the initial guess: 𝑐̂& = 𝑐̂&∗



An Iterative Approach

• First, solve with 𝜖𝐼𝑐 = 0 to get 𝑐̂& =
(!
"

(!
")*"

,-!
(!

• Then, use this solution as an initial guess and solve again to get:  

𝑐̂& =
(!
"

(!
")*"

,-!
(!
+ *"

(!
")*"

(!
"

(!
")*"

,-!
(!
= 1 + *"

(!
")*"

(!
"

(!
")*"

,-!
(!

• Then, use this solution as an initial guess and solve again to get:

𝑐̂& =
(!
"

(!
")*"

,-!
(!
+ *"

(!
")*"

1 + *"

(!
")*"

(!
"

(!
")*"

,-!
(!

= 1 +
𝜖&

𝜎!& + 𝜖&
+

𝜖&

𝜎!& + 𝜖&

& 𝜎!&

𝜎!& + 𝜖&
-𝑏!
𝜎!



Convergence

• Continuing leads to 𝑐̂& = 1 + *"

(!
")*"

+ *"

(!
")*"

$
+ *"

(!
")*"

.
+⋯ (!

"

(!
")*"

,-!
(!

• The geometric series in parenthesis has 𝑟 = *"

(!
")*"

• It converges to '
'/"

= (!
")*"

(!
" giving 𝑐̂& =

,-!
(!

in the limit (as desired)

• When 𝜎& = 0, the convex weights are 0 and 1, so 𝑐̂& = 0 identically at every step
• This is the desired minimum norm solution for these 𝜎!



Convergence Rate

• After 𝑞 iterations, the geometric series sums to '/"
#

'/"
= (!

")*"

(!
" 1 − *"

(!
")*"

0

• This gives 𝑐̂& = 1 − *"

(!
")*"

0 ,-!
(!

implying monotonic convergence to 𝑐̂& =
,-!
(!

• since 𝑟 = $"

"!
"#$" < 1 implies 𝑟' → 0 monotonically as 𝑞 → ∞

• The convergence is quick for large 𝜎& (as desired)

• Smaller 𝜎& have *"

(!
")*"

closer to 1, so their 𝑐̂& increase more slowly from zero 

towards 
,-!
(!

(smaller 𝜎& are thus regularized)



Comparison with PCA

• After 𝑞 iterations, PCA incorporates the 𝑞 largest 𝜎& components into the 
solution
• PCA does not include any contribution (at all) for the other components
• Smaller 𝜎! components are Heaviside thresholded to be identically zero

• After 𝑞 iterations, this iterative approach does not include the full contribution of 
the 𝑞 largest 𝜎& components
• It includes 1 − 𝑟!

' times those components, but 1 − 𝑟!
' ≈ 1 when 𝜎! is large

• This iterative approach includes contributions from all components
• The contribution from smaller 𝜎! components is smaller, since their 1 − 𝑟!

' is not as close 
to 1 when 𝜎! is small
• This iterative approach has a significantly smoother fall-off as 𝜎! decreases



Aside

• This iterative method and the analysis via a geometric series (slides 7-10) were 
derived in preparation for the Winter 2019 offering of this course
• Hyde, D., Bao, M., and Fedkiw, R., "On Obtaining Sparse Semantic Solutions for Inverse 

Problems, Control, and Neural Network Training", J. Comp. Phys. 443, 110498 (2021).

• The non-iterative version of the method is a version of Levenberg-Marquardt



Adding a Diagonal Matrix

• Adding 𝐷𝑐 = 0 to obtain: 𝐴𝐷 𝑐 = 𝑏
0 drives some variables more strongly 

towards zero than others
• The normal equations are 𝐴!𝐴 + 𝐷$ 𝑐 = 𝐴!𝑏
• Equivalently 𝑉𝛴!𝛴𝑉! + 𝐷$ 𝑐 = 𝑉𝛴! +𝑏 or 𝛴!𝛴 + 𝑉!𝐷$𝑉 𝑐̂ = 𝛴! +𝑏

• These normal equations can also be derived starting from 𝛴
𝐷𝑉 𝑐̂ = +𝑏

0
• Unfortunately, 𝐷 shears the vectors in 𝑉 creating issues

• This motivates first column scaling 𝐴𝐷
/'

𝐼
𝐷𝑐 = 𝑏

0 to obtain an 
N𝐴
𝐼
𝑐̃ = 𝑏

0
that can be treated in the original way (by adding 𝐼𝑐̃ = 0)



Recall: Matrix Columns as Vectors (unit 1)

• Let the k-th column of 𝐴 be vector 𝑎&, so 𝐴𝑐 = 𝑦 is equivalent to ∑& 𝑐&𝑎& = 𝑦
• Find a linear combination of the columns of 𝐴 that gives the right hand side 

vector 𝑦



An Example

• Determine 𝑐' and 𝑐$ such that 𝑐'𝑎' + 𝑐$𝑎$ = 𝑏 or 𝐴𝑐 = 𝑏

𝑎'
𝑎$
𝑏



Overshooting

• Since 𝑎' and 𝑎$ are not parallel, there is a unique solution
• However, this solution overshoots 𝑏 by quite a bit, and then backtracks

𝑐'𝑎'
𝑐$𝑎$



Regularization/Damping

• Adding regularization of 𝐼𝑐 = 0 damps both components of the solution

𝑐'𝑎'
𝑐$𝑎$



Smarter Regularization

• Adding regularization of 0 0
0 1 𝑐 = 0 only damps 𝑐$ and allows 𝑐'𝑎' to estimate 

𝑏 unhindered

𝑐'𝑎'
𝑐$𝑎$



Coordinate Descent

• Coordinate Descent looks at one vector at a time
• After making good progress with 𝑎', there is little advantage to using 𝑎$ 

𝑐'𝑎'
𝑐$𝑎$



Geometric Approaches

• Thinking geometrically avoids issues with the rank of 𝐴
• Other concerns may be more important:
• Use as few columns as possible - Setting many 𝑐&  to zero gives a sparser 

solution (which is easier to glean semantic information from)
• Correlation - Columns more parallel to 𝑏 may be more relevant than those 

that are more perpendicular
• Gains - Columns that have a large dot product with 𝑏’s direction make more 

progress towards 𝑏 with smaller 𝑐&  values (more minimal solution norm)



Correlation vs. Gains

• Consider 𝑎& ⋅ 𝑏 = 𝑎& $ 𝑏 $ cosΘ where Θ measures how parallel 𝑎&  and 𝑏 are

• Correlation preference uses the columns 𝑎&  with a larger cos	Θ, i.e. columns that 
point more closely in the same direction as 𝑏

• When the 𝑐&  represent actions, the goal of minimizing action (gains) leads to a 
preference for smaller 𝑐&
• similar in spirit to 𝐼𝑐 = 0 or minimum norm solutions

• Then, columns that make more progress in the direction of 𝑏 are preferable

• Progress in the direction of 𝑏 is measured via 𝑎& ⋅
-
- "

 or 𝑎& $ cosΘ



Facial Animation

• Create a procedural skinning 
model of a face, where (input) 
animation parameters 𝜃 lead to a 
3D position (output) for every 
vertex of the face mesh 𝜑(𝜃)
• E.g. in blend shape systems, each 

component of 𝜃 corresponds to a 
different expression (or sub-
expression), and setting multiple 
components to be nonzero mixes 
expressions

𝜑(𝜃') 𝜑(𝜃$)



Facial Tracking

• On the 3D model, embed (red) 
curves around the eyes/mouth 
that move with the 3D surface as 
it deforms
• Draw similar (blue) curves on a 2D 

RGB image of the actual face
• Goal: projection of the red curves 

(onto the image plane) should 
overlap the blue curves (giving an 
estimate of 𝜃 for the 2D RGB 
image)2D	RGB	Image 3D	model



Facial Tracking

• The blue curves are data 𝐶∗

• The projection of the red curves 𝐶 
is a function of the 3D geometry 
𝜑, which in turn is a function of 
the animation parameters 𝜃, i.e. 
𝐶 𝜑 𝜃
• Determine 𝜃 that minimizes the 

difference 𝐶 𝜑 𝜃 − 𝐶∗  
between the curves

2D	RGB	Image 3D	model



Solving for the Animation Parameters

• This nonlinear problem can be solved via optimization
• At every step of optimization, the problem is linearized
• Solving the resulting linear system 𝐴𝑐 = 𝑏 gives a search 

direction, which is used to make progress towards the 
solution

• The optimization performs poorly 
without regularization

• The resulting 𝜃 values are wild and 
arbitrary (as seen in the figure)

• The curves provide too little data for 
the optimization to work well



L2 Regularization

• Adding 𝐼𝑐 = 0 to the linearized problem at every iteration 
has the expected result:
• The regularized problem is much more solvable, and the results 

are less noisy

• However, 𝜃 is overly damped (as seen in the figure)

• Also, a large number of animation 
parameters 𝜃 are nonzero, even for 
this is relatively simple expression

• This hinders the interpretability 
(semantics) of 𝜃



“Soft L1” Regularization

• There are many options for regularization
• In particular, “soft L1” typically produces a sparser set of 

solution parameters than L2 regularization (see figure)
• A sparser solution allows one to better ascertain semantic 

meaning from the animation parameters 𝜃

• But, 𝜃 is still overly damped



A Geometric Approach (Column Space Search)

• The column space search gives a sparse set of solution 
parameters with significantly less damping
• This allows one to better ascertain semantic meaning 

from the animation parameters 𝜃


