Optimization

Part II Roadmap

- Part I - Linear Algebra (units 1-12) $A c=b$
- Part II - Optimization (units 13-20)

- (units 13-16) Optimization -> Nonlinear Equations -> 1D roots/minima

Theory

- (units 17-18) Computing/Avoiding Derivatives
- (unit 19) Hack 1.0: "I give up" $H=I$ and J is mostly 0 (descent methods)

Methods

- (unit 20) Hack 2.0: "It's an ODE!?" (adaptive learning rate and momentum)

Approximating Functions

- Consider the $\left(x_{i}, y_{i}\right)$ data shown below
- Here, $y=\sqrt{1-x^{2}}$ looks like a good approximation

Approximating Functions

- Consider the $\left(x_{i}, y_{i}\right)$ data shown below
- Here, $x^{2}+y^{2}=1$ looks like a good approximation (fails the vertical line test)

Approximating Functions

- A function does not need to be explicit in y
- Any relationship between x and y is fine, i.e. $f(x, y)=0$
- It is difficult to consider all possible functions at the same time; so, one typically chooses a parametric family of possible functions (a model for f)
- E.g., f could be all possible circles $\left(x-c_{1}\right)^{2}+\left(y-c_{2}\right)^{2}-c_{3}^{2}=0$ where the center (c_{1}, c_{2}) and radius c_{3} are chosen to best fit the data
- $f(x, y ; c)=0$ could be a family of circles, or polynomials, or a network architecture, etc.
- Determine parameters c that make $f(x, y ; c)=0$ best fit the data, i.e. that make $\left\|f\left(x_{i}, y_{i} ; c\right)\right\|$ close to zero for all i
- Don't forget to be careful about overfitting/underfitting

Choosing a Norm

- $f(x, y ; c)$ may have scalar or vector output; for vectors, a norm needs to be chosen for $\left\|f\left(x_{i}, y_{i} ; c\right)\right\|$, e.g. L^{1}, L^{2}, L^{∞}, "soft" L^{1}, etc.
- E.g., $\left\|f\left(x_{i}, y_{i} ; c\right)\right\|_{2}=\sqrt{f\left(x_{i}, y_{i} ; c\right)^{T} f\left(x_{i}, y_{i} ; c\right)}$
- There is an $f\left(x_{i}, y_{i} ; c\right)$ for each ordered pair $\left(x_{i}, y_{i}\right)$, so a norm needs to be chosen to combine all of these together as well
- E.g., $\sqrt{\sum_{i}\left\|f\left(x_{i}, y_{i} ; c\right)\right\|_{2}^{2}}=\sqrt{\sum_{i} f\left(x_{i}, y_{i} ; c\right)^{T} f\left(x_{i}, y_{i} ; c\right)}$
- Minimize $\sqrt{\sum_{i} f\left(x_{i}, y_{i} ; c\right)^{T} f\left(x_{i}, y_{i} ; c\right)}$ or equivalently $\sum_{i} f\left(x_{i}, y_{i} ; c\right)^{T} f\left(x_{i}, y_{i} ; c\right)$
- Since all the $\left(x_{i}, y_{i}\right)$ are known, the cost function is only a function of c
- Minimize $\hat{f}(c)=\sum_{i} f\left(x_{i}, y_{i} ; c\right)^{T} f\left(x_{i}, y_{i} ; c\right)$, which is Nonlinear Least Squares

Optimization

- Minimize the cost function $\hat{f}(c)$
- Since maximizing $\hat{f}(c)$ is equivalent to minimizing $-\hat{f}(c)$, optimization is typically approached as a minimization problem
- Optimization algorithms often get stuck in and/or only guarantee the ability to find local minima (presumably one might prefer global minima)
- Sometimes finding lots of local minima, and then choosing the smallest of those, is a good strategy
- When constraints are present, denoted constrained (as opposed unconstrained) optimization
- Constraints can be equations or inequalities (e.g. $c_{k}>0$ for all k)
- Constraints can often be folded into the cost function, if one is willing to accept the consequences (more on this later)

Conditioning

- Recall: Minimizing the residual $r=b-A c$ with an L^{2} norm led to the normal equations $A^{T} A c=A^{T} b$ that square the condition number
- This is an issue for optimization as well:
- Optimization considers critical points where $\frac{\partial \hat{f}}{\partial c_{k}}(c)=0$ simultaneously for all k
- Partial derivatives approaching zero (near critical points) makes the function locally flat, and thus algorithms struggle to find robust downhill search directions
- The condition number for minimizing $\hat{f}(c)$ is typically the square of that for solving $\hat{f}(c)=0$ (i.e. for finding the roots of $\hat{f}(c)=0$)
- Can only expect half as many significant digits of accuracy
- If an error tolerance of ϵ would be used for solving $\hat{f}(c)=0$, then a weaker (larger) $\sqrt{\epsilon}$ error tolerance is more appropriate for minimizing $\hat{f}(c)$

Nonlinear Systems of Equations

- Critical points have $\frac{\partial \hat{f}}{\partial c_{k}}(c)=0$ simultaneously for all k
- Stacking all the (potentially) nonlinear functions $\frac{\partial \hat{f}}{\partial c_{k}}(c)$ into a single vector valued function, the critical points are solutions to $F(c)=\left(\begin{array}{c}\frac{\partial \hat{f}}{\partial c_{1}}(c) \\ \frac{\partial \hat{f}}{\partial c_{2}}(c) \\ \vdots \\ \frac{\partial \hat{f}}{\partial c_{n}}(c)\end{array}\right)=0$
- $F(c)=J_{\hat{f}}^{T}(c)=\nabla \hat{f}(c)=0$ is a nonlinear system of equations
- It may have no solution, any finite number of solutions, or infinite solutions

(Equality) Constrained Optimization

- Constraints can be equalities, e.g. $\hat{g}(c)=0$, or inequalities (see unit 17)
- Given a diagonal matrix D of (positive) weights indicating the relative importance of various constraints, add a penalty term $\hat{g}^{T}(c) D \hat{g}(c) \geq 0$ to the cost function and proceed via unconstrained optimization
- I.e., minimize $\hat{f}(c)+\hat{g}^{T}(c) D \hat{g}(c)$ via unconstrained optimization
- Various other options also exist:
- E.g. Add Lagrange multipliers η as new variables, and minimize $\hat{f}(c)+\eta^{T} \hat{g}(c)$

Lagrange Multipliers

- Minimize $\hat{f}(c)+\eta^{T} \hat{g}(c)$
- Critical Points: $\nabla\left(\hat{f}(c)+\eta^{T} \hat{g}(c)\right)=\binom{J_{\hat{f}}^{T}(c)+J_{\hat{g}}^{T}(c) \eta}{\hat{g}(c)}=0$
- Note how the $\hat{g}(c)=0$ constraints are automatically satisfied at critical points
- Critical points satisfy $J_{\hat{f}}^{T}(c)=-J_{\hat{g}}^{T}(c) \eta$ instead of the usual $J_{\hat{f}}^{T}(c)=0$
- In the simple case when $\hat{g}(c)$ is linear in c, the Hessian is $\left(\begin{array}{cc}H_{\hat{f}}(c) & J_{\hat{g}}^{T} \\ J_{\hat{g}} & 0\end{array}\right)$ which is symmetric but not positive definite
- However, positive definiteness is only required on the tangent space to the constraint surface (i.e., on the null space of $J_{\hat{g}}$)

Lagrange Multipliers (Example)

- Minimize $\hat{f}(c)=\frac{1}{2} c_{1}^{2}+\frac{5}{2} c_{2}^{2}$ subject to $\hat{g}(c)=c_{1}-c_{2}-1=0$
- Or, minimize $\frac{1}{2} c_{1}^{2}+\frac{5}{2} c_{2}^{2}+\eta_{1}\left(c_{1}-c_{2}-1\right)$
- Critical Points: $\left.\binom{c_{1}}{5 c_{2}}+\binom{1}{-1} \eta_{1}\right)=\binom{c_{1}+\eta_{1}}{c_{1}-c_{2}-1}=0$
- $\operatorname{Or},\left(\begin{array}{ccc}1 & 0 & 1 \\ 0 & 5 & -1 \\ 1 & -1 & 0\end{array}\right)\left(\begin{array}{l}c_{1} \\ c_{2} \\ \eta_{1}\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$ or $\left(\begin{array}{l}c_{1} \\ c_{2} \\ \eta_{1}\end{array}\right)=\left(\begin{array}{c}5 / 6 \\ -1 / 6 \\ -5 / 6\end{array}\right)$
- The Hessian is $\left(\begin{array}{cc}\left(\begin{array}{cc}1 & 0 \\ 0 & 5\end{array}\right) & \binom{1}{-1} \\ (1 & -1\end{array}\right)=\left(\begin{array}{ccc}1 & 0 & 1 \\ 0 & 5 & -1 \\ 1 & -1 & 0\end{array}\right)$

Lagrange Multipliers (Example)

- Isocontours of $\hat{f}(c)$ are ellipses, and the constraint is the line $c_{2}=c_{1}-1$
- At critical point $\left(\frac{5}{6},-\frac{1}{6}\right)$, the steepest descent direction $-\nabla \hat{f}=\binom{-5 / 6}{5 / 6}$ is perpendicular to the constraint surface (which has $(1,1)$ as the line direction)

Lagrange Multipliers (Example)

- Plug $c_{2}=c_{1}-1$ into $\hat{f}(c)$ to get $\frac{1}{5} c_{1}^{2}+\frac{5}{2}\left(c_{1}-1\right)^{2}=3 c_{1}^{2}-5 c_{1}+\frac{5}{2}$, which is a parabola with minimum at $c_{1}=\frac{5}{6}$ (as expected)

