
Optimization



Part II Roadmap

• Part I – Linear Algebra (units 1-12) 𝐴𝑐 = 𝑏

• Part II – Optimization (units 13-20)
• (units 13-16) Optimization -> Nonlinear Equations -> 1D roots/minima 
• (units 17-18) Computing/Avoiding Derivatives
• (unit 19) Hack 1.0: “I give up” 𝐻 = 𝐼 and 𝐽 is mostly 0 (descent methods)
• (unit 20) Hack 2.0: ”It’s an ODE!?” (adaptive learning rate and momentum)

linearize
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Approximating Functions

• Consider the (𝑥! , 𝑦!) data shown below
• Here, 𝑦 = 1 − 𝑥" looks like a good approximation



Approximating Functions

• Consider the (𝑥! , 𝑦!) data shown below
• Here, 𝑥" + 𝑦" = 1 looks like a good approximation (fails the vertical line test)



Approximating Functions

• A function does not need to be explicit in 𝑦
• Any relationship between 𝑥 and 𝑦 is fine, i.e. 𝑓(𝑥, 𝑦) = 0
• It is difficult to consider all possible functions at the same time; so, one typically 

chooses a parametric family of possible functions (a model for 𝑓)
• E.g., 𝑓 could be all possible circles 𝑥 − 𝑐! " + 𝑦 − 𝑐" " − 𝑐#" = 0 where the center 
(𝑐!, 𝑐") and radius 𝑐# are chosen to best fit the data

• 𝑓 𝑥, 𝑦; 𝑐 = 0 could be a family of circles, or polynomials, or a network 
architecture, etc.
• Determine parameters 𝑐 that make 𝑓 𝑥, 𝑦; 𝑐 = 0 best fit the data, i.e. that make 
𝑓 𝑥! , 𝑦!; 𝑐  close to zero for all 𝑖
• Don’t forget to be careful about overfitting/underfitting



Choosing a Norm

• 𝑓 𝑥, 𝑦; 𝑐  may have scalar or vector output; for vectors, a norm needs to be 
chosen for 𝑓 𝑥! , 𝑦!; 𝑐  , e.g. 𝐿#, 𝐿", 𝐿$, “soft” 𝐿#, etc.
• E.g., 𝑓 𝑥$, 𝑦$; 𝑐 " = 𝑓 𝑥$, 𝑦$; 𝑐 %𝑓 𝑥$, 𝑦$; 𝑐

• There is an 𝑓 𝑥! , 𝑦!; 𝑐  for each ordered pair 𝑥! , 𝑦! , so a norm needs to be 
chosen to combine all of these together as well

• E.g., ∑$ 𝑓 𝑥$, 𝑦$; 𝑐 "
" = ∑$ 𝑓 𝑥$, 𝑦$; 𝑐 %𝑓 𝑥$, 𝑦$; 𝑐

• Minimize ∑! 𝑓 𝑥! , 𝑦!; 𝑐 %𝑓 𝑥! , 𝑦!; 𝑐  or equivalently ∑! 𝑓 𝑥! , 𝑦!; 𝑐 %𝑓 𝑥! , 𝑦!; 𝑐
• Since all the 𝑥! , 𝑦!  are known, the cost function is only a function of 𝑐
• Minimize 1𝑓 𝑐 = ∑$ 𝑓 𝑥$, 𝑦$; 𝑐 %𝑓 𝑥$, 𝑦$; 𝑐 , which is Nonlinear Least Squares



Optimization

• Minimize the cost function 3𝑓 𝑐
• Since maximizing 3𝑓 𝑐  is equivalent to minimizing − 3𝑓 𝑐 , optimization is typically 

approached as a minimization problem
• Optimization algorithms often get stuck in and/or only guarantee the ability to 

find local minima (presumably one might prefer global minima)
• Sometimes finding lots of local minima, and then choosing the smallest of those, is a good 

strategy
• When constraints are present, denoted constrained (as opposed unconstrained) 

optimization
• Constraints can be equations or inequalities (e.g. 𝑐& > 0 for all 𝑘)
• Constraints can often be folded into the cost function, if one is willing to accept the 

consequences (more on this later)



Conditioning

• Recall: Minimizing the residual 𝑟 = 𝑏 − 𝐴𝑐 with an 𝐿!	norm led to the normal equations 
𝐴"𝐴𝑐 = 𝐴"𝑏 that square the condition number
• This is an issue for optimization as well:

• Optimization considers critical points where #
$%

#&!
𝑐 = 0 simultaneously for all 𝑘

• Partial derivatives approaching zero (near critical points) makes the function locally 
flat, and thus algorithms struggle to find robust downhill search directions

• The condition number for minimizing +𝑓 𝑐  is typically the square of that for solving 
+𝑓 𝑐 = 0 (i.e. for finding the roots of +𝑓 𝑐 = 0)
• Can only expect half as many significant digits of accuracy
• If an error tolerance of 𝜖 would be used for solving +𝑓 𝑐 = 0, then a weaker (larger) 

𝜖 error tolerance is more appropriate for minimizing +𝑓 𝑐



Nonlinear Systems of Equations

• Critical points have &
'(

&)!
𝑐 = 0 simultaneously for all 𝑘

• Stacking all the (potentially) nonlinear functions &
'(

&)!
𝑐  into a single vector 

valued function, the critical points are solutions to 𝐹 𝑐 =

& '(
&)"

(𝑐)
& '(
&)#

(𝑐)
⋮

& '(
&)$

(𝑐)

= 0

• 𝐹 𝑐 = 𝐽 '(
% 𝑐 = ∇ 3𝑓(𝑐) = 0 is a nonlinear system of equations

• It may have no solution, any finite number of solutions, or infinite solutions



(Equality) Constrained Optimization

• Constraints can be equalities, e.g. 9𝑔 𝑐 = 0, or inequalities (see unit 17)
• Given a diagonal matrix 𝐷 of (positive) weights indicating the relative importance 

of various constraints, add a penalty term 9𝑔% 𝑐 𝐷 9𝑔 𝑐 ≥ 0 to the cost function 
and proceed via unconstrained optimization 
• I.e., minimize 1𝑓 𝑐 + 4𝑔% 𝑐 𝐷 4𝑔 𝑐  via unconstrained optimization

• Various other options also exist:
• E.g. Add Lagrange multipliers 𝜂 as new variables, and minimize 1𝑓 𝑐 + 𝜂% 4𝑔 𝑐



Lagrange Multipliers

• Minimize 3𝑓 𝑐 + 𝜂% 9𝑔 𝑐

• Critical Points: ∇ 3𝑓 𝑐 + 𝜂% 9𝑔 𝑐 =
𝐽 '(
% 𝑐 + 𝐽 *+

% 𝑐 𝜂
9𝑔 𝑐

= 0

• Note how the 4𝑔 𝑐 = 0 constraints are automatically satisfied at critical points

• Critical points satisfy 𝐽 '(
% 𝑐 = −𝐽 *+

% 𝑐 𝜂 instead of the usual 𝐽 '(
% 𝑐 = 0

• In the simple case when 9𝑔 𝑐  is linear in 𝑐, the Hessian is 
𝐻 '( 𝑐 𝐽 *+

%

𝐽 *+ 0
 which is 

symmetric but not positive definite
• However, positive definiteness is only required on the tangent space to the constraint 

surface (i.e., on the null space of 𝐽 '()



Lagrange Multipliers (Example)

• Minimize 3𝑓 𝑐 = #
"
𝑐#" +

,
"
𝑐"" subject to 9𝑔 𝑐 = 𝑐# − 𝑐" − 1 = 0

• Or, minimize #
"
𝑐#" +

,
"
𝑐"" + 𝜂#(𝑐# − 𝑐" − 1)

• Critical Points: 
𝑐#
5𝑐"

+ 1
−1 𝜂#

𝑐# − 𝑐" − 1
=

𝑐# + 𝜂#
5𝑐" − 𝜂#
𝑐# − 𝑐" − 1

= 0

• Or,
1 0 1
0 5 −1
1 −1 0

𝑐#
𝑐"
𝜂#

=
0
0
1

 or 
𝑐#
𝑐"
𝜂#

=
5/6
−1/6
−5/6

• The Hessian is 
1 0
0 5

1
−1

1 −1 0
=

1 0 1
0 5 −1
1 −1 0



Lagrange Multipliers (Example)

• Isocontours of 3𝑓 𝑐  are ellipses, and the constraint is the line 𝑐" = 𝑐# − 1

• At critical point ,
-
, − #

-
, the steepest descent direction −∇ 3𝑓 = −5/6

5/6  is 
perpendicular to the constraint surface (which has (1,1) as the line direction) 



Lagrange Multipliers (Example)

• Plug 𝑐" = 𝑐# − 1 into 3𝑓 𝑐 	to get #
"
𝑐#" +

,
"
𝑐# − 1 " = 3𝑐#" − 5𝑐# +

,
"
 , which is a 

parabola with minimum at 𝑐# =
,
-
 (as expected)


