
Nonlinear Systems

Part II Roadmap

• Part I – Linear Algebra (units 1-12) 𝐴𝑐 = 𝑏

• Part II – Optimization (units 13-20)
• (units 13-16) Optimization -> Nonlinear Equations -> 1D roots/minima
• (units 17-18) Computing/Avoiding Derivatives
• (unit 19) Hack 1.0: “I give up” 𝐻 = 𝐼 and 𝐽 is mostly 0 (descent methods)
• (unit 20) Hack 2.0: ”It’s an ODE!?” (adaptive learning rate and momentum)

linearize
line search

Theory

Methods

Recall: Jacobian (Unit 9)

• The Jacobian of 𝐹 𝑐 =

𝐹!(𝑐)
𝐹"(𝑐)
⋮

𝐹#(𝑐)

 has entries 𝐽$% =
&'!
&("

(𝑐)

• Thus, the Jacobian 𝐽 𝑐 = 𝐹) 𝑐 =

&'#
&(#

(𝑐) &'#
&($

(𝑐) ⋯ &'#
&(%

(𝑐)
&'$
&(#

(𝑐) &'$
&($

(𝑐) ⋯ &'$
&(%

(𝑐)

⋮
&'&
&(#

(𝑐)
⋮

&'&
&($

(𝑐)
⋱
⋯

⋮
&'&
&(%

(𝑐)

Linearization

• Solving a nonlinear system of equations 𝐹 𝑐 = 0 is difficult
• Linearize via the multidimensional version of the Taylor expansion:

𝐹 𝑐 ≈ 𝐹 𝑐∗ + 𝐹′(𝑐∗) 𝑐 − 𝑐∗
• More valid when Δ𝑐 = 𝑐 − 𝑐∗ is small (i.e. for 𝑐 close enough to 𝑐∗)
• Alternatively written as 𝐹 𝑐 − 𝐹 𝑐∗ ≈ 𝐹′(𝑐∗)Δ𝑐

• The chain rule +' (
+,

= 𝐹) 𝑐 +(
+,

 is valid for any variable 𝑡, and thus can be
written in differential form as 𝑑𝐹 𝑐 = 𝐹) 𝑐 𝑑𝑐
• Often referred to as the total derivative
• Using finite size differentials leads to the approximation: Δ𝐹 𝑐 ≈ 𝐹" 𝑐 Δ𝑐
• In 1D, 𝑑𝑓 = 𝑓" 𝑐 𝑑𝑐 and Δ𝑓 ≈ 𝑓" 𝑐 Δ𝑐	are the usual #$

#%
= 𝑓′(𝑐) and &$

&%
≈ 𝑓" 𝑐

Newton’s Method

• An iterative method: start with 𝑐-, recursively find: 𝑐!, 𝑐", 𝑐.,	…

• Based on Δ𝐹 𝑐 ≈ 𝐹) 𝑐 Δ𝑐, write 𝐹 𝑐/0! − 𝐹 𝑐/ = 𝐹) 𝑐/ Δ𝑐/
• Aiming for 𝐹 𝑐 = 0 motivates setting 𝐹 𝑐/0! = 0
• Alternatively, set 𝐹 𝑐/0! = 𝛽𝐹 𝑐/ where 0 ≤ 𝛽 < 1 aims to slowly shrink
𝐹 𝑐/ towards zero

• Solve the linear system 𝐹) 𝑐/ Δ𝑐/ = (𝛽 − 1)𝐹 𝑐/ for Δ𝑐/

• Use Δ𝑐/ = 𝑐/0! − 𝑐/ to update 𝑐/0! = 𝑐/ + Δ𝑐/

Newton’s Method

• Requires repeatedly solving a linear system, making robustness and efficiency for
linear system solvers quite important
• Need to consider size, rank, conditioning, symmetry, etc. of 𝐹" 𝑐'

• 𝐹) 𝑐/ may be difficult to compute, since it requires every first derivative
• Newton’s Method contains linearization errors, so approximations of 𝐹" 𝑐' are often

valid/worthwhile (e.g. symmetric approximation, etc.)
• More on this in units 17/18 on Computing/Avoiding Derivatives

• Generally speaking, there are no guarantees on convergence
• May converge to any one of many roots when multiple roots exist, or not converge at all

Solving Linear Systems (Review)

• Theory, all matrices: SVD (units 3, 10, 11)
• Square, full rank, dense:
• LU factorization with pivoting (unit 2)
• Symmetric: Cholesky factorization (unit 4), Symmetric approximation (unit 4)

• Square, full rank, sparse (iterative solvers) (unit 5):
• SPD (sometimes SPSD): Conjugate Gradients
• Nonsymmetric/Indefinite: GMRES, MINRES, BiCGSTAB (not steepest descent)

• Tall, full rank (least squares to minimize residual) (unit 8):
• normal equations (units 9, 10), QR, Gram-Schmidt, Householder (unit 10)

• Any size/rank (minimum norm solution) (unit 11):
• Pseudo-Inverse, PCA approximation, Power Method (unit 11)
• Levenberg-Marquardt (iteration too), Column Space Geometric Approach (unit 12)

Line Search

• Given the linearization errors in 𝐹) 𝑐/ Δ𝑐/ = (𝛽 − 1)𝐹 𝑐/ , the resulting Δ𝑐/
can lead to a poor estimate for 𝑐/0! via 𝑐/0! = 𝑐/ + Δ𝑐/

• Instead, Δ𝑐/ is often just used as a search direction, i.e. 𝑐/0! 	= 𝑐/ + 𝛼/Δ𝑐/

• The 1D (parameterized) line 𝑐/0! 𝛼 = 𝑐/ + 𝛼Δ𝑐/ is the new domain
• Find an 𝛼 with 𝐹 𝑐/0! 𝛼 = 0 simultaneously for all equations

• Safe Set methods restrict 𝛼 in various ways, e.g. 0 ≤ 𝛼 ≤ 1

Line Search

• Since 𝐹 is vector valued, consider 𝑔 𝛼 = 𝐹 𝑐/0! 𝛼 1𝐹 𝑐/0! 𝛼 = 0
• Since 𝑔 𝛼 ≥ 0, solutions to 𝐹 𝑐/0! 𝛼 = 0 are minima of 𝑔 𝛼
• 𝑔 𝛼 might be strictly positive (with no 𝑔 𝛼 = 0), but minimizing 𝑔(𝛼) might

still help to make progress towards an 𝛼 with 𝐹 𝑐/0! 𝛼 = 0

• Option 1: find simultaneous roots of the vector valued 𝐹 𝑐/0! 𝛼 = 0

• Option 2: find roots of or minimize 𝑔 𝛼 = !
"
𝐹1 𝑐/0! 𝛼 𝐹 𝑐/0! 𝛼 , to find or

make progress towards an 𝛼 with 𝐹 𝑐/0! 𝛼 = 0

Optimization Problems

• Minimize the scalar cost function >𝑓(𝑐) by finding the critical points where
∇ >𝑓 𝑐 = 𝐽 23

1(𝑐) = 𝐹 𝑐 = 0
• 𝐹) 𝑐/ Δ𝑐/ = (𝛽 − 1)𝐹 𝑐/ gives the search direction (as usual)
• Here, 𝐹) 𝑐 = 𝐽' 𝑐 = 𝐻 23

1 𝑐
• So, solve 𝐻 23

1(𝑐/)Δ𝑐/ = (𝛽 − 1)𝐽 23
1(𝑐/) to find the search direction Δ𝑐/

• Option 1: find simultaneous roots of the vector valued 𝐽 23
1 𝑐/0! 𝛼 = 0, which

are critical points of >𝑓(𝑐)
• Option 2: find roots of or minimize 𝑔 𝛼 = !

"
𝐽 23 𝑐/0! 𝛼 𝐽 23

1 𝑐/0! 𝛼 , to find or
make progress towards critical points of >𝑓(𝑐)
• Option 3: minimize >𝑓(𝑐/0!(𝛼)) directly

