Nonlinear Systems

Part II Roadmap

- Part I - Linear Algebra (units 1-12) $A c=b$
- Part II - Optimization (units 13-20)

- (units 13-16) Optimization -> Nonlinear Equations -> 1D roots/minima

Theory

- (units 17-18) Computing/Avoiding Derivatives
- (unit 19) Hack 1.0: "I give up" $H=I$ and J is mostly 0 (descent methods)

Methods

- (unit 20) Hack 2.0: "It's an ODE!?" (adaptive learning rate and momentum)

Recall: Jacobian (Unit 9)

- The Jacobian of $F(c)=\left(\begin{array}{c}F_{1}(c) \\ F_{2}(c) \\ \vdots \\ F_{m}(c)\end{array}\right)$ has entries $J_{i k}=\frac{\partial F_{i}}{\partial c_{k}}(c)$
- Thus, the Jacobian $J(c)=F^{\prime}(c)=\left(\begin{array}{cccc}\frac{\partial F_{1}}{\partial c_{1}}(c) & \frac{\partial F_{1}}{\partial c_{2}}(c) & \cdots & \frac{\partial F_{1}}{\partial c_{n}}(c) \\ \frac{\partial F_{2}}{\partial c_{1}}(c) & \frac{\partial F_{2}}{\partial c_{2}}(c) & \cdots & \frac{\partial F_{2}}{\partial c_{n}}(c) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial F_{m}}{\partial c_{1}}(c) & \frac{\partial F_{m}}{\partial c_{2}}(c) & \cdots & \frac{\partial F_{m}}{\partial c_{n}}(c)\end{array}\right)$

Linearization

- Solving a nonlinear system of equations $F(c)=0$ is difficult
- Linearize via the multidimensional version of the Taylor expansion:

$$
F(c) \approx F\left(c^{*}\right)+F^{\prime}\left(c^{*}\right)\left(c-c^{*}\right)
$$

- More valid when $\Delta c=c-c^{*}$ is small (i.e. for c close enough to c^{*})
- Alternatively written as $F(c)-F\left(c^{*}\right) \approx F^{\prime}\left(c^{*}\right) \Delta c$
- The chain rule $\frac{d F(c)}{d t}=F^{\prime}(c) \frac{d c}{d t}$ is valid for any variable t, and thus can be written in differential form as $d F(c)=F^{\prime}(c) d c$
- Often referred to as the total derivative
- Using finite size differentials leads to the approximation: $\Delta F(c) \approx F^{\prime}(c) \Delta c$
- In 1D, $d f=f^{\prime}(c) d c$ and $\Delta f \approx f^{\prime}(c) \Delta c$ are the usual $\frac{d f}{d c}=f^{\prime}(c)$ and $\frac{\Delta f}{\Delta c} \approx f^{\prime}(c)$

Newton's Method

- An iterative method: start with c^{0}, recursively find: $c^{1}, c^{2}, c^{3}, \ldots$
- Based on $\Delta F(c) \approx F^{\prime}(c) \Delta c$, write $F\left(c^{q+1}\right)-F\left(c^{q}\right)=F^{\prime}\left(c^{q}\right) \Delta c^{q}$
- Aiming for $F(c)=0$ motivates setting $F\left(c^{q+1}\right)=0$
- Alternatively, set $F\left(c^{q+1}\right)=\beta F\left(c^{q}\right)$ where $0 \leq \beta<1$ aims to slowly shrink $F\left(c^{q}\right)$ towards zero
- Solve the linear system $F^{\prime}\left(c^{q}\right) \Delta c^{q}=(\beta-1) F\left(c^{q}\right)$ for Δc^{q}
- Use $\Delta c^{q}=c^{q+1}-c^{q}$ to update $c^{q+1}=c^{q}+\Delta c^{q}$

Newton's Method

- Requires repeatedly solving a linear system, making robustness and efficiency for linear system solvers quite important
- Need to consider size, rank, conditioning, symmetry, etc. of $F^{\prime}\left(c^{q}\right)$
- $F^{\prime}\left(c^{q}\right)$ may be difficult to compute, since it requires every first derivative
- Newton's Method contains linearization errors, so approximations of $F^{\prime}\left(c^{q}\right)$ are often valid/worthwhile (e.g. symmetric approximation, etc.)
- More on this in units $17 / 18$ on Computing/Avoiding Derivatives
- Generally speaking, there are no guarantees on convergence
- May converge to any one of many roots when multiple roots exist, or not converge at all

Solving Linear Systems (Review)

- Theory, all matrices: SVD (units $3,10,11$)
- Square, full rank, dense:
- LU factorization with pivoting (unit 2)
- Symmetric: Cholesky factorization (unit 4), Symmetric approximation (unit 4)
- Square, full rank, sparse (iterative solvers) (unit 5):
- SPD (sometimes SPSD): Conjugate Gradients
- Nonsymmetric/Indefinite: GMRES, MINRES, BiCGSTAB (not steepest descent)
- Tall, full rank (least squares to minimize residual) (unit 8):
- normal equations (units 9, 10), QR, Gram-Schmidt, Householder (unit 10)
- Any size/rank (minimum norm solution) (unit 11):
- Pseudo-Inverse, PCA approximation, Power Method (unit 11)
- Levenberg-Marquardt (iteration too), Column Space Geometric Approach (unit 12)

Line Search

- Given the linearization errors in $F^{\prime}\left(c^{q}\right) \Delta c^{q}=(\beta-1) F\left(c^{q}\right)$, the resulting Δc^{q} can lead to a poor estimate for c^{q+1} via $c^{q+1}=c^{q}+\Delta c^{q}$
- Instead, Δc^{q} is often just used as a search direction, i.e. $c^{q+1}=c^{q}+\alpha^{q} \Delta c^{q}$
- The 1D (parameterized) line $c^{q+1}(\alpha)=c^{q}+\alpha \Delta c^{q}$ is the new domain
- Find an α with $F\left(c^{q+1}(\alpha)\right)=0$ simultaneously for all equations
- Safe Set methods restrict α in various ways, e.g. $0 \leq \alpha \leq 1$

Line Search

- Since F is vector valued, consider $g(\alpha)=F\left(c^{q+1}(\alpha)\right)^{T} F\left(c^{q+1}(\alpha)\right)=0$
- Since $g(\alpha) \geq 0$, solutions to $F\left(c^{q+1}(\alpha)\right)=0$ are minima of $g(\alpha)$
- $g(\alpha)$ might be strictly positive (with no $g(\alpha)=0$), but minimizing $g(\alpha)$ might still help to make progress towards an α with $F\left(c^{q+1}(\alpha)\right)=0$
- Option 1: find simultaneous roots of the vector valued $F\left(c^{q+1}(\alpha)\right)=0$
- Option 2: find roots of or minimize $g(\alpha)=\frac{1}{2} F^{T}\left(c^{q+1}(\alpha)\right) F\left(c^{q+1}(\alpha)\right)$, to find or make progress towards an α with $F\left(c^{q+1}(\alpha)\right)=0$

Optimization Problems

- Minimize the scalar cost function $\hat{f}(c)$ by finding the critical points where $\nabla \hat{f}(c)=J_{\hat{f}}^{T}(c)=F(c)=0$
- $F^{\prime}\left(c^{q}\right) \Delta c^{q}=(\beta-1) F\left(c^{q}\right)$ gives the search direction (as usual)
- Here, $F^{\prime}(c)=J_{F}(c)=H_{\hat{f}}^{T}(c)$
- So, solve $H_{\hat{f}}^{T}\left(c^{q}\right) \Delta c^{q}=(\beta-1) J_{\hat{f}}^{T}\left(c^{q}\right)$ to find the search direction Δc^{q}
- Option 1: find simultaneous roots of the vector valued $J_{\hat{f}}^{T}\left(c^{q+1}(\alpha)\right)=0$, which are critical points of $\hat{f}(c)$
- Option 2: find roots of or minimize $g(\alpha)=\frac{1}{2} J_{\hat{f}}\left(c^{q+1}(\alpha)\right) J_{\hat{f}}^{T}\left(c^{q+1}(\alpha)\right)$, to find or make progress towards critical points of $\hat{f}(c)$
- Option 3: minimize $\hat{f}\left(c^{q+1}(\alpha)\right)$ directly

