1D Root Finding

Part II Roadmap

- Part I Linear Algebra (units 1-12) Ac = b
 - linearize

line search

Theory

Methods

- Part II Optimization (units 13-20)
 - (units 13-16) Optimization -> Nonlinear Equations -> 1D roots/minima ->
 - (units 17-18) Computing/Avoiding Derivatives
 - (unit 19) Hack 1.0: "I give up" H = I and J is mostly 0 (descent methods)
 - (unit 20) Hack 2.0: "It's an ODE!?" (adaptive learning rate and momentum)

Fixed Point Iteration

- Find roots of g(t), i.e. where g(t) = 0
- Let $\hat{g}(t) = g(t) + t$ and iterate $t^{q+1} = \hat{g}(t^q)$ until convergence
- A converged t^* satisfies $t^* = \hat{g}(t^*) = g(t^*) + t^*$ implying that $g(t^*) = 0$
- Converges when: $|g'(t^*)| < 1$, the initial guess is close enough to t^* , and g is sufficiently smooth
- $e^{q+1} = t^{q+1} t^* = \hat{g}(t^q) \hat{g}(t^*) = g'(\hat{t})(t^q t^*) = g'(\hat{t})e^q$ for some \hat{t} between t^{q+1} and t^* (by the Mean Value Theorem)
- When all $g'(\hat{t})$ have $|g'(\hat{t})| \leq C < 1$, then $|e^q| \leq C^q |e^0|$ proves convergence

Convergence Rate

- Consider $||e^{q+1}|| \le C ||e^q||^p$ as $q \to \infty$ where $C \ge 0$
 - When p = 1, C < 1 is required and the convergence rate is <u>linear</u>
 - When p > 1, the convergence rate is <u>superlinear</u>
 - When p = 2, the convergence rate is <u>quadratic</u>
- Statements only apply asymptotically (once convergence is happening)
- Might converge to a different non-desired root (when other roots are present)
- Solving g(t) = 0 may only approximate the problem being solved, so it's not clear how accurate the root finder needs to be anyways

1D Newton's Method

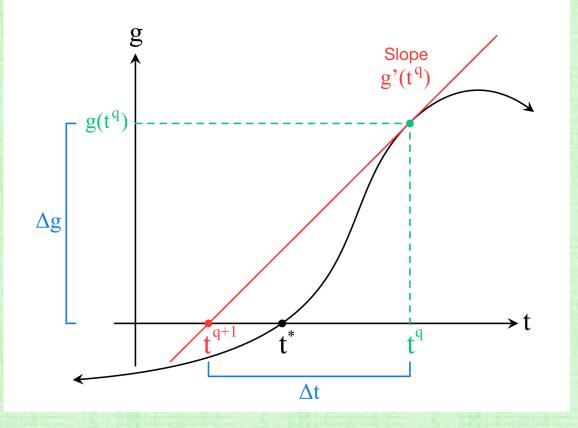
• Solve $g'(t^q)\Delta t = -g(t^q)$ and update $t^{q+1} = t^q + \Delta t = t^q - \frac{g(t^q)}{g'(t^q)}$

• Stop when $|g(t^q)| < \epsilon$, which implies $|t^{q+1} - t^q| < \frac{\epsilon}{|g'(t^q)|}$

- Thus, poorly conditioned when $g'(t^*)$ is small
- Especially problematic for repeated roots where $g'(t^*) = 0$
- Quadratic convergence rate (p = 2), when not degenerate
- Requires computing g and g' every iteration; but, computing derivatives isn't always straightforward/cheap (see units 17/18 on Computing/Avoiding Derivatives)

1D Newton's Method

•
$$t^{q+1} = t^q - \frac{g(t^q)}{g'(t^q)}$$
 or alternatively $g'(t^q) = \frac{g(t^q) - 0}{t^q - t^{q+1}} = \frac{\Delta g}{\Delta t}$



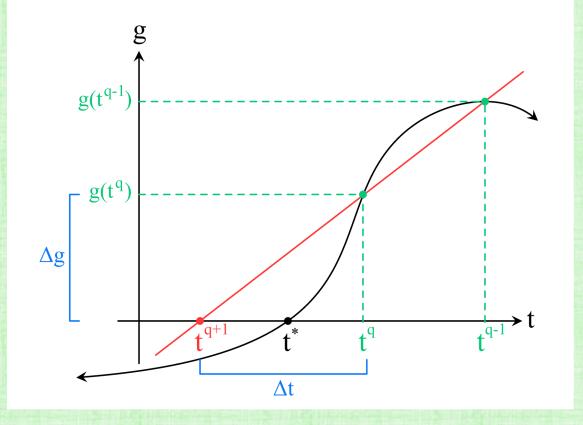
Secant Method

- Replace $q'(t^q)$ in Newton's method with an estimate (a few choices for this)
- The standard approach draws a line through previous iterates
- Estimate $g'(t^q) \approx \frac{g(t^q) g(t^{q-1})}{t^q t^{q-1}}$ Then $t^{q+1} = t^q g(t^q) \frac{t^q t^{q-1}}{g(t^q) g(t^{q-1})}$

- Superlinear convergence rate with $p \approx 1.618$, when not degenerate
- Typically/often faster than Newton, since q' is not needed and only a few extra iterations are required to obtain the same accuracy (for a reasonable accuracy)

Secant Method

• $t^{q+1} = t^q - g(t^q) \frac{t^{q-t^{q-1}}}{g(t^q) - g(t^{q-1})}$ based on $g'(t^q) \approx \frac{g(t^q) - g(t^{q-1})}{t^q - t^{q-1}}$

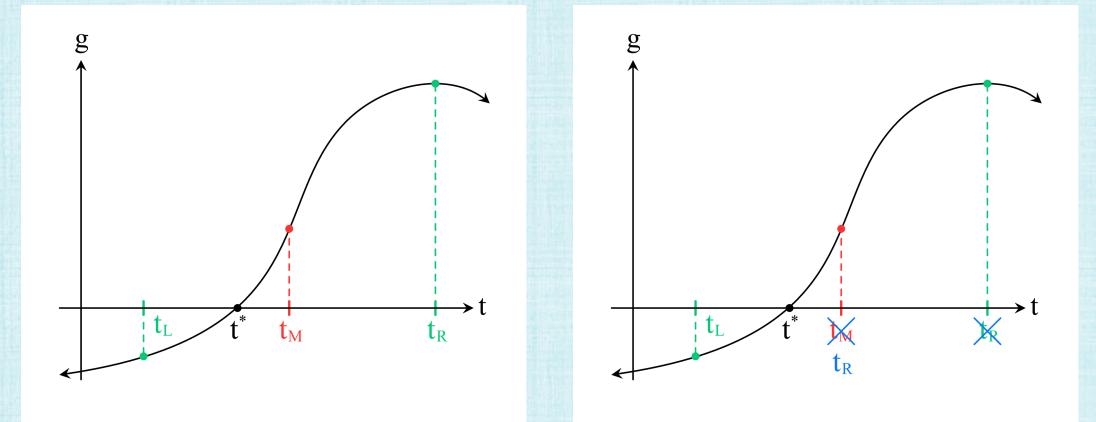


Bisection Method

- If $g(t_L)g(t_R) < 0$, then (assuming continuity) the sign change indicates a root in the interval $[t_L, t_R]$
- Let $t_M = \frac{t_L + t_R}{2}$,
 - If $g(t_L)g(t_M) < 0$, set $t_R = t_M$
 - Otherwise, set $t_L = t_M$ knowing that $g(t_R)g(t_M) < 0$ is true
- Iterate until $t_R t_L < \epsilon$
- Guaranteed to converge to a root in the interval (unlike Newton/Secant)
- The interval shrinks in size by a factor of two each iteration; so, linear convergence rate (p = 1) with $C = \frac{1}{2}$

Bisection Method

• If $g(t_L)g(t_M) < 0$, set $t_R = t_M$; otherwise, set $t_L = t_M$



Mixed Methods

- Given an interval with a root indicated by $g(t_L)g(t_R) < 0$
- Iterate with Newton/Secant as long as the iterates stay inside the interval
 - When iteration attempts to leave the interval, use prior iterates to shrink the interval as much as possible (while still guaranteeing a root)
- If Newton/Secant attempt to leave the current interval, instead use Bisection to continue shrinking the interval
- Leverages the speed of Newton/Secant, while still guaranteeing convergence via Bisection
- Many/various strategies exist

Function/Derivative Requirements

- All methods require evaluation of the function g
- Newton also requires the derivative g' (as do mixed methods using Newton)

Useful Derivatives

• $\frac{\partial}{\partial t}c^{q+1}(t) = \Delta c^q$, since $c^{q+1}(t) = c^q + t\Delta c^q$

•
$$\frac{\partial}{\partial t}F(c^{q+1}(t)) = J_F(c^{q+1}(t))\Delta c^q \text{ and } \frac{\partial}{\partial t}F^T(c^{q+1}(t)) = (\Delta c^q)^T J_F^T(c^{q+1}(t))$$

• $\frac{\partial}{\partial t}F_i(c^{q+1}(t)) = (J_F)_i(c^{q+1}(t))\Delta c^q$ where the $F_i(c^{q+1}(t))$ are the scalar row entries of $F(c^{q+1}(t))$

• Scalar $\hat{f}(c^{q+1}(t))$ has system $J_{\hat{f}}^T(c^{q+1}(t)) = 0$ for critical points • $\frac{\partial}{\partial t}J_{\hat{f}}^T(c^{q+1}(t)) = H_{\hat{f}}^T(c^{q+1}(t))\Delta c^q$ and $\frac{\partial}{\partial t}J_{\hat{f}}(c^{q+1}(t)) = (\Delta c^q)^T H_{\hat{f}}(c^{q+1}(t))$ • $\frac{\partial}{\partial t}(J_{\hat{f}}^T)_i(c^{q+1}(t)) = (H_{\hat{f}}^T)_i(c^{q+1}(t))\Delta c^q$

Recall: Line Search (Unit 14)

- Given the linearization errors in $F'(c^q)\Delta c^q = (\beta 1)F(c^q)$, the resulting Δc^q can lead to a poor estimate for c^{q+1} via $c^{q+1} = c^q + \Delta c^q$
- Instead, Δc^q is often just used as a search direction, i.e. $c^{q+1} = c^q + \alpha^q \Delta c^q$
- The 1D (parameterized) line $c^{q+1}(\alpha) = c^q + \alpha \Delta c^q$ is the new domain
- Find an α with $F(c^{q+1}(\alpha)) = 0$ simultaneously for all equations
- <u>Safe Set</u> methods restrict α in various ways, e.g. $0 \le \alpha \le 1$

Recall: Line Search (Unit 14)

- Since F is vector valued, consider $g(\alpha) = F(c^{q+1}(\alpha))^T F(c^{q+1}(\alpha)) = 0$
- Since $g(\alpha) \ge 0$, solutions to $F(c^{q+1}(\alpha)) = 0$ are minima of $g(\alpha)$
- $g(\alpha)$ might be <u>strictly</u> positive (with no $g(\alpha) = 0$), but minimizing $g(\alpha)$ might still help to make progress towards an α with $F(c^{q+1}(\alpha)) = 0$

- Option 1: find simultaneous roots of the vector valued $F(c^{q+1}(\alpha)) = 0$
- <u>Option 2</u>: find roots of or minimize $g(\alpha) = \frac{1}{2}F^T(c^{q+1}(\alpha))F(c^{q+1}(\alpha))$, to find or make progress towards an α with $F(c^{q+1}(\alpha)) = 0$

Nonlinear Systems Problems

- Solve $J_F(c^q)\Delta c^q = (\beta 1)F(c^q)$ for Δc^q and use $c^{q+1}(t) = c^q + t\Delta c^q$ in $F(c^{q+1}(t)) = 0$
- <u>Option 1</u>: find simultaneous (for all *i*) roots for all the $g_i(t) = F_i(c^{q+1}(t)) = 0$ • Here, $g'_i(t) = (J_F)_i(c^{q+1}(t))\Delta c^q$
- Option 2: find roots of $g(t) = \frac{1}{2}F^T(c^{q+1}(t))F(c^{q+1}(t)) = 0$
 - Here, $g'(t) = \frac{1}{2} F^T (c^{q+1}(t)) J_F (c^{q+1}(t)) \Delta c^q + \frac{1}{2} (\Delta c^q)^T J_F^T (c^{q+1}(t)) F(c^{q+1}(t))$
 - Since both terms are scalars, $g'(t) = F^T(c^{q+1}(t))J_F(c^{q+1}(t))\Delta c^q$

Recall: Optimization Problems (Unit 14)

- Minimize the scalar cost function $\hat{f}(c)$ by finding the critical points where $\nabla \hat{f}(c) = J_{\hat{f}}^T(c) = F(c) = 0$
- $F'(c^q)\Delta c^q = (\beta 1)F(c^q)$ gives the search direction (as usual)
- Here, $F'(c) = J_F(c) = H_{\hat{f}}^T(c)$
- So, solve $H_{\hat{f}}^T(c^q)\Delta c^q = (\beta 1)J_{\hat{f}}^T(c^q)$ to find the search direction Δc^q
- <u>Option 1</u>: find simultaneous roots of the vector valued $J_{\hat{f}}^T(c^{q+1}(\alpha)) = 0$, which are critical points of $\hat{f}(c)$
- <u>Option 2</u>: find roots of or minimize $g(\alpha) = \frac{1}{2}J_{\hat{f}}(c^{q+1}(\alpha))J_{\hat{f}}^T(c^{q+1}(\alpha))$, to find or make progress towards critical points of $\hat{f}(c)$
- Option 3: minimize $\hat{f}(c^{q+1}(\alpha))$ directly

Optimization Problems

• Solve $H_{\hat{f}}^T(c^q)\Delta c^q = (\beta - 1)J_{\hat{f}}^T(c^q)$ for Δc^q and use $c^{q+1}(t) = c^q + t\Delta c^q$ in $J_{\hat{f}}^T(c^{q+1}(t)) = 0$

- <u>Option 1</u>: find simultaneous (for all *i*) roots for all the $g_i(t) = (J_{\hat{f}}^T)_i(c^{q+1}(t)) = 0$ to find the critical points of $\hat{f}(c)$ • Here, $g'_i(t) = (H_{\hat{f}}^T)_i(c^{q+1}(t))\Delta c^q$
- <u>Option 2</u>: find roots of $g(t) = \frac{1}{2}J_{\hat{f}}(c^{q+1}(t))J_{\hat{f}}^T(c^{q+1}(t)) = 0$ to find or make progress towards critical points of $\hat{f}(c)$
 - Here, $g'(t) = \frac{1}{2} J_{\hat{f}}(c^{q+1}(t)) H_{\hat{f}}^T(c^{q+1}(t)) \Delta c^q + \frac{1}{2} (\Delta c^q)^T H_{\hat{f}}(c^{q+1}(t)) J_{\hat{f}}^T(c^{q+1}(t))$
 - Since both terms are scalars, $g'(t) = J_{\hat{f}}(c^{q+1}(t))H_{\hat{f}}^T(c^{q+1}(t))\Delta c^q$
- Option 3: minimize $\hat{f}(c^{q+1}(t))$ directly (see unit 16)