1D Root Finding

Part II Roadmap

- Part I - Linear Algebra (units 1-12) $A c=b$
- Part II - Optimization (units 13-20)

- (units 13-16) Optimization \rightarrow Nonlinear Equations -> 1D roots/minima \longleftarrow Theory
- (units 17-18) Computing/Avoiding Derivatives
- (unit 19) Hack 1.0: "I give up" $H=I$ and J is mostly 0 (descent methods)

Methods

- (unit 20) Hack 2.0: "It's an ODE!?" (adaptive learning rate and momentum)

Fixed Point Iteration

- Find roots of $g(t)$, i.e. where $g(t)=0$
- Let $\hat{g}(t)=g(t)+t$ and iterate $t^{q+1}=\hat{g}\left(t^{q}\right)$ until convergence
- A converged t^{*} satisfies $t^{*}=\hat{g}\left(t^{*}\right)=g\left(t^{*}\right)+t^{*}$ implying that $g\left(t^{*}\right)=0$
- Converges when: $\left|g^{\prime}\left(t^{*}\right)\right|<1$, the initial guess is close enough to t^{*}, and g is sufficiently smooth
- $e^{q+1}=t^{q+1}-t^{*}=\hat{g}\left(t^{q}\right)-\hat{g}\left(t^{*}\right)=g^{\prime}(\hat{t})\left(t^{q}-t^{*}\right)=g^{\prime}(\hat{t}) e^{q}$ for some \hat{t} between t^{q+1} and t^{*} (by the Mean Value Theorem)
- When all $g^{\prime}(\hat{t})$ have $\left|g^{\prime}(\hat{t})\right| \leq C<1$, then $\left|e^{q}\right| \leq C^{q}\left|e^{0}\right|$ proves convergence

Convergence Rate

- Consider $\left\|e^{q+1}\right\| \leq C\left\|e^{q}\right\|^{p}$ as $q \rightarrow \infty$ where $C \geq 0$
- When $p=1, C<1$ is required and the convergence rate is linear
-When $p>1$, the convergence rate is superlinear
- When $p=2$, the convergence rate is quadratic
- Statements only apply asymptotically (once convergence is happening)
- Might converge to a different non-desired root (when other roots are present)
- Solving $g(t)=0$ may only approximate the problem being solved, so it's not clear how accurate the root finder needs to be anyways

1D Newton's Method

- Solve $g^{\prime}\left(t^{q}\right) \Delta t=-g\left(t^{q}\right)$ and update $t^{q+1}=t^{q}+\Delta t=t^{q}-\frac{g\left(t^{q}\right)}{g^{\prime}\left(t^{q}\right)}$
- Stop when $\left|g\left(t^{q}\right)\right|<\epsilon$, which implies $\left|t^{q+1}-t^{q}\right|<\frac{\epsilon}{\left|g^{\prime}\left(t^{q}\right)\right|}$
- Thus, poorly conditioned when $g^{\prime}\left(t^{*}\right)$ is small
- Especially problematic for repeated roots where $g^{\prime}\left(t^{*}\right)=0$
- Quadratic convergence rate ($p=2$), when not degenerate
- Requires computing g and g^{\prime} every iteration; but, computing derivatives isn't always straightforward/cheap (see units 17/18 on Computing/Avoiding Derivatives)

1D Newton's Method

- $t^{q+1}=t^{q}-\frac{g\left(t^{q}\right)}{g^{\prime}\left(t^{q}\right)}$ or alternatively $g^{\prime}\left(t^{q}\right)=\frac{g\left(t^{q}\right)-0}{t^{q}-t^{q+1}}=\frac{\Delta g}{\Delta t}$

Secant Method

- Replace $g^{\prime}\left(t^{q}\right)$ in Newton's method with an estimate (a few choices for this)
- The standard approach draws a line through previous iterates
- Estimate $g^{\prime}\left(t^{q}\right) \approx \frac{g\left(t^{q}\right)-g\left(t^{q-1}\right)}{t^{q}-t^{q-1}}$
- Then $t^{q+1}=t^{q}-g\left(t^{q}\right) \frac{t^{q}-t^{q-1}}{g\left(t^{q}\right)-g\left(t^{q-1}\right)}$
- Superlinear convergence rate with $p \approx 1.618$, when not degenerate
- Typically/often faster than Newton, since g^{\prime} is not needed and only a few extra iterations are required to obtain the same accuracy (for a reasonable accuracy)

Secant Method

- $t^{q+1}=t^{q}-g\left(t^{q}\right) \frac{t^{q}-t^{q-1}}{g\left(t^{q}\right)-g\left(t^{q-1}\right)}$ based on $g^{\prime}\left(t^{q}\right) \approx \frac{g\left(t^{q}\right)-g\left(t^{q-1}\right)}{t^{q}-t^{q-1}}$

Bisection Method

- If $g\left(t_{L}\right) g\left(t_{R}\right)<0$, then (assuming continuity) the sign change indicates a root in the interval $\left[t_{L}, t_{R}\right]$
- Let $t_{M}=\frac{t_{L}+t_{R}}{2}$,
- If $g\left(t_{L}\right) g\left(t_{M}\right)<0$, set $t_{R}=t_{M}$
- Otherwise, set $t_{L}=t_{M}$ knowing that $g\left(t_{R}\right) g\left(t_{M}\right)<0$ is true
- Iterate until $t_{R}-t_{L}<\epsilon$
- Guaranteed to converge to a root in the interval (unlike Newton/Secant)
- The interval shrinks in size by a factor of two each iteration; so, linear convergence rate $(p=1)$ with $C=\frac{1}{2}$

Bisection Method

- If $g\left(t_{L}\right) g\left(t_{M}\right)<0$, set $t_{R}=t_{M}$; otherwise, set $t_{L}=t_{M}$

Mixed Methods

- Given an interval with a root indicated by $g\left(t_{L}\right) g\left(t_{R}\right)<0$
- Iterate with Newton/Secant as long as the iterates stay inside the interval
- When iteration attempts to leave the interval, use prior iterates to shrink the interval as much as possible (while still guaranteeing a root)
- If Newton/Secant attempt to leave the current interval, instead use Bisection to continue shrinking the interval
- Leverages the speed of Newton/Secant, while still guaranteeing convergence via Bisection
- Many/various strategies exist

Function/Derivative Requirements

- All methods require evaluation of the function g
- Newton also requires the derivative g^{\prime} (as do mixed methods using Newton)

Useful Derivatives

$\frac{\partial}{\partial t} c^{q+1}(t)=\Delta c^{q}$, since $c^{q+1}(t)=c^{q}+t \Delta c^{q}$

- $\frac{\partial}{\partial t} F\left(c^{q+1}(t)\right)=J_{F}\left(c^{q+1}(t)\right) \Delta c^{q}$ and $\frac{\partial}{\partial t} F^{T}\left(c^{q+1}(t)\right)=\left(\Delta c^{q}\right)^{T} J_{F}^{T}\left(c^{q+1}(t)\right)$
- $\frac{\partial}{\partial t} F_{i}\left(c^{q+1}(t)\right)=\left(J_{F}\right)_{i}\left(c^{q+1}(t)\right) \Delta c^{q}$ where the $F_{i}\left(c^{q+1}(t)\right)$ are the scalar row entries of $\stackrel{F}{F}\left(c^{q+1}(t)\right)$
- Scalar $\hat{f}\left(c^{q+1}(t)\right)$ has system $J_{\hat{f}}^{T}\left(c^{q+1}(t)\right)=0$ for critical points
- $\frac{\partial}{\partial t} J_{\hat{f}}^{T}\left(c^{q+1}(t)\right)=H_{\hat{f}}^{T}\left(c^{q+1}(t)\right) \Delta c^{q}$ and $\frac{\partial}{\partial t} J_{\hat{f}}\left(c^{q+1}(t)\right)=\left(\Delta c^{q}\right)^{T} H_{\hat{f}}\left(c^{q+1}(t)\right)$
- $\frac{\partial}{\partial t}\left(J_{f}^{T}\right)_{i}\left(c^{q+1}(t)\right)=\left(H_{f}^{T}\right)_{i}\left(c^{q+1}(t)\right) \Delta c^{q}$

Recall: Line Search (Unit 14)

- Given the linearization errors in $F^{\prime}\left(c^{q}\right) \Delta c^{q}=(\beta-1) F\left(c^{q}\right)$, the resulting Δc^{q} can lead to a poor estimate for c^{q+1} via $c^{q+1}=c^{q}+\Delta c^{q}$
- Instead, Δc^{q} is often just used as a search direction, i.e. $c^{q+1}=c^{q}+\alpha^{q} \Delta c^{q}$
- The 1D (parameterized) line $c^{q+1}(\alpha)=c^{q}+\alpha \Delta c^{q}$ is the new domain
- Find an α with $F\left(c^{q+1}(\alpha)\right)=0$ simultaneously for all equations
- Safe Set methods restrict α in various ways, e.g. $0 \leq \alpha \leq 1$

Recall: Line Search (Unit 14)

- Since F is vector valued, consider $g(\alpha)=F\left(c^{q+1}(\alpha)\right)^{T} F\left(c^{q+1}(\alpha)\right)=0$
- Since $g(\alpha) \geq 0$, solutions to $F\left(c^{q+1}(\alpha)\right)=0$ are minima of $g(\alpha)$
- $g(\alpha)$ might be strictly positive (with no $g(\alpha)=0$), but minimizing $g(\alpha)$ might still help to make progress towards an α with $F\left(c^{q+1}(\alpha)\right)=0$
- Option 1: find simultaneous roots of the vector valued $F\left(c^{q+1}(\alpha)\right)=0$
- Option 2: find roots of or minimize $g(\alpha)=\frac{1}{2} F^{T}\left(c^{q+1}(\alpha)\right) F\left(c^{q+1}(\alpha)\right)$, to find or make progress towards an α with $F\left(c^{q+1}(\alpha)\right)=0$

Nonlinear Systems Problems

- Solve $J_{F}\left(c^{q}\right) \Delta c^{q}=(\beta-1) F\left(c^{q}\right)$ for Δc^{q} and use $c^{q+1}(t)=c^{q}+t \Delta c^{q}$ in $F\left(c^{q+1}(t)\right)=0$
- Option 1: find simultaneous (for all i) roots for all the $g_{i}(t)=F_{i}\left(c^{q+1}(t)\right)=0$
- Here, $g_{i}^{\prime}(t)=\left(J_{F}\right)_{i}\left(c^{q+1}(t)\right) \Delta c^{q}$
- Option 2: find roots of $g(t)=\frac{1}{2} F^{T}\left(c^{q+1}(t)\right) F\left(c^{q+1}(t)\right)=0$
- Here, $g^{\prime}(t)=\frac{1}{2} F^{T}\left(c^{q+1}(t)\right) J_{F}\left(c^{q+1}(t)\right) \Delta c^{q}+\frac{1}{2}\left(\Delta c^{q}\right)^{T} J_{F}^{T}\left(c^{q+1}(t)\right) F\left(c^{q+1}(t)\right)$
- Since both terms are scalars, $g^{\prime}(t)=F^{T}\left(c^{q+1}(t)\right) J_{F}\left(c^{q+1}(t)\right) \Delta c^{q}$

Recall: Optimization Problems (Unit 14)

- Minimize the scalar cost function $\hat{f}(c)$ by finding the critical points where $\nabla \hat{f}(c)=J_{\hat{f}}^{T}(c)=F(c)=0$
- $F^{\prime}\left(c^{q}\right) \Delta c^{q}=(\beta-1) F\left(c^{q}\right)$ gives the search direction (as usual)
- Here, $F^{\prime}(c)=J_{F}(c)=H_{\hat{f}}^{T}(c)$
- So, solve $H_{\hat{f}}^{T}\left(c^{q}\right) \Delta c^{q}=(\beta-1) J_{\hat{f}}^{T}\left(c^{q}\right)$ to find the search direction Δc^{q}
- Option 1: find simultaneous roots of the vector valued $J_{\hat{f}}^{T}\left(c^{q+1}(\alpha)\right)=0$, which are critical points of $\hat{f}(c)$
- Option 2: find roots of or minimize $g(\alpha)=\frac{1}{2} J_{\hat{f}}\left(c^{q+1}(\alpha)\right) J_{\hat{f}}^{T}\left(c^{q+1}(\alpha)\right)$, to find or make progress towards critical points of $\hat{f}(c)$
- Option 3: minimize $\hat{f}\left(c^{q+1}(\alpha)\right)$ directly

Optimization Problems

- Solve $H_{\hat{\hat{T}}}^{T}\left(c^{q}\right) \Delta c^{q}=(\beta-1) J_{\hat{f}}^{T}\left(c^{q}\right)$ for Δc^{q} and use $c^{q+1}(t)=c^{q}+t \Delta c^{q}$ in $J_{\hat{f}}^{T}\left(c^{q+1}(t)\right)=0$
- Option 1: find simultaneous (for all i) roots for all the $g_{i}(t)=\left(J_{\hat{f}}^{T}\right)_{i}\left(c^{q+1}(t)\right)=$ 0 to find the critical points of $\hat{f}(c)$
- Here, $g_{i}^{\prime}(t)=\left(H_{\hat{f}}^{T}\right)_{i}\left(c^{q+1}(t)\right) \Delta c^{q}$
- Option 2: find roots of $g(t)=\frac{1}{2} J_{\hat{f}}\left(c^{q+1}(t)\right) J_{\hat{f}}^{T}\left(c^{q+1}(t)\right)=0$ to find or make progress towards critical points of $\hat{f}(c)$
- Here, $\left.g^{\prime}(t)=\frac{1}{2} J_{\hat{f}}\left(c^{q+1}(t)\right) H_{\hat{f}}^{T}\left(c^{q+1}(t)\right) \Delta c^{q}+\frac{1}{2}\left(\Delta c^{q}\right)^{T} H_{\hat{f}}\left(c^{q+1}(t)\right)\right)_{\hat{f}}^{T}\left(c^{q+1}(t)\right)$
- Since both terms are scalars, $g^{\prime}(t)=J_{\hat{f}}\left(c^{q+1}(t)\right) H_{\hat{f}}^{T}\left(c^{q+1}(t)\right) \Delta c^{q}$
- Option 3: minimize $\hat{f}\left(c^{q+1}(t)\right)$ directly (see unit 16)

