
1D Root Finding



Part II Roadmap

• Part I – Linear Algebra (units 1-12) 𝐴𝑐 = 𝑏

• Part II – Optimization (units 13-20)
• (units 13-16) Optimization -> Nonlinear Equations -> 1D roots/minima 
• (units 17-18) Computing/Avoiding Derivatives
• (unit 19) Hack 1.0: “I give up” 𝐻 = 𝐼 and 𝐽 is mostly 0 (descent methods)
• (unit 20) Hack 2.0: ”It’s an ODE!?” (adaptive learning rate and momentum)

linearize
line search

Theory

Methods



Fixed Point Iteration

• Find roots of 𝑔 𝑡 , i.e. where 𝑔 𝑡 = 0

• Let (𝑔 𝑡 = 𝑔 𝑡 + 𝑡 and iterate 𝑡!"# = (𝑔(𝑡!) until convergence
• A converged 𝑡∗ satisfies 𝑡∗ = (𝑔 𝑡∗ = 𝑔 𝑡∗ + 𝑡∗ implying that 𝑔 𝑡∗ = 0

• Converges when: 𝑔′ 𝑡∗ < 1, the initial guess is close enough to 𝑡∗, and 𝑔 is 
sufficiently smooth
• 𝑒!"# = 𝑡!"# − 𝑡∗ = (𝑔 𝑡! − (𝑔 𝑡∗ = 𝑔% �̂� 𝑡! − 𝑡∗ = 𝑔% �̂� 𝑒!  for some �̂� 

between 𝑡!"# and 𝑡∗ (by the Mean Value Theorem)
• When all 𝑔% �̂�  have 𝑔′ �̂� ≤ 𝐶 < 1, then 𝑒! ≤ 𝐶! 𝑒&  proves convergence



Convergence Rate

• Consider 𝑒!"# ≤ 𝐶 𝑒! ' as 𝑞 → ∞ where 𝐶 ≥ 0
• When 𝑝 = 1, 𝐶 < 1 is required and the convergence rate is linear
• When 𝑝 > 1, the convergence rate is superlinear
• When 𝑝 = 2, the convergence rate is quadratic

• Statements only apply asymptotically (once convergence is happening)
• Might converge to a different non-desired root (when other roots are present)

• Solving 𝑔 𝑡 = 0 may only approximate the problem being solved, so it’s not 
clear how accurate the root finder needs to be anyways



1D Newton’s Method

• Solve 𝑔′ 𝑡! Δ𝑡 = −𝑔 𝑡!  and update 𝑡!"# = 𝑡! + Δ𝑡 = 𝑡! − ( )!

("()!)

• Stop when 𝑔 𝑡! < 𝜖, which implies 𝑡!"# − 𝑡! < ,
("()!) 	

• Thus, poorly conditioned when 𝑔′ 𝑡∗  is small
• Especially problematic for repeated roots where 𝑔′(𝑡∗) = 0

• Quadratic convergence rate (𝑝 = 2), when not degenerate
• Requires computing 𝑔 and 𝑔′ every iteration; but, computing derivatives isn’t 

always straightforward/cheap (see units 17/18 on Computing/Avoiding 
Derivatives)



1D Newton’s Method

• 𝑡!"# = 𝑡! − ( )!

("()!)
   or alternatively  𝑔% 𝑡! = ( )! .&

)!.)!#$
= /(

/)



Secant Method

• Replace 𝑔′(𝑡!) in Newton’s method with an estimate (a few choices for this)
• The standard approach draws a line through previous iterates 

• Estimate 𝑔% 𝑡! ≈ ( )! .(()!%$)
)!.)!%$

• Then 𝑡!"# = 𝑡! − 𝑔(𝑡!) )!.)!%$

( )! .(()!%$)

• Superlinear convergence rate with 𝑝 ≈ 1.618, when not degenerate
• Typically/often faster than Newton, since 𝑔′ is not needed and only a few extra 

iterations are required to obtain the same accuracy (for a reasonable accuracy)



Secant Method

• 𝑡!"# = 𝑡! − 𝑔(𝑡!) )!.)!%$

( )! .(()!%$)
	 based on 𝑔% 𝑡! ≈ ( )! .( )!%$

)!.)!%$



Bisection Method

• If 𝑔 𝑡! 𝑔 𝑡" < 0, then (assuming continuity) the sign change indicates a root in the 
interval 𝑡!, 𝑡"
• Let 𝑡# = $!%$"

&
, 

• If 𝑔 𝑡! 𝑔 𝑡# < 0, set 𝑡" = 𝑡#
• Otherwise, set 𝑡! = 𝑡# knowing that 𝑔 𝑡" 𝑔 𝑡# < 0 is true

• Iterate until 𝑡" − 𝑡! < 𝜖

• Guaranteed to converge to a root in the interval (unlike Newton/Secant)

• The interval shrinks in size by a factor of two each iteration; so, linear convergence rate 
(𝑝 = 1) with 𝐶 = '

&



Bisection Method

• If 𝑔 𝑡0 𝑔 𝑡1 < 0, set 𝑡2 = 𝑡1; otherwise, set 𝑡0 = 𝑡1



Mixed Methods

• Given an interval with a root indicated by 𝑔 𝑡0 𝑔 𝑡2 < 0
• Iterate with Newton/Secant as long as the iterates stay inside the interval
• When iteration attempts to leave the interval, use prior iterates to shrink the 

interval as much as possible (while still guaranteeing a root)
• If Newton/Secant attempt to leave the current interval, instead use Bisection to 

continue shrinking the interval

• Leverages the speed of Newton/Secant, while still guaranteeing convergence via 
Bisection

• Many/various strategies exist



Function/Derivative Requirements

• All methods require evaluation of the function 𝑔

• Newton also requires the derivative 𝑔′ (as do mixed methods using Newton)



Useful Derivatives

• 3
3)
𝑐!"# 𝑡 = Δ𝑐!, since 𝑐!"# 𝑡 = 𝑐! + 𝑡Δ𝑐!  

• 3
3)
𝐹 𝑐!"# 𝑡 = 𝐽4 𝑐!"# 𝑡 Δ𝑐!  and 3

3)
𝐹5 𝑐!"# 𝑡 = Δ𝑐! 5𝐽45 𝑐!"# 𝑡

• "
"#𝐹$ 𝑐

%&' 𝑡 = 𝐽( $ 𝑐%&' 𝑡  Δ𝑐% where the 𝐹$ 𝑐%&' 𝑡  are the scalar row entries of 
𝐹 𝑐%&' 𝑡

• Scalar D𝑓(𝑐!"#(𝑡)) has system 𝐽 67
5 𝑐!"# 𝑡 = 0 for critical points

• 3
3)
𝐽 67
5 𝑐!"# 𝑡 = 𝐻 67

5 𝑐!"# 𝑡 Δ𝑐!  and 3
3)
𝐽 67 𝑐!"# 𝑡 = Δ𝑐! 5𝐻 67 𝑐!"# 𝑡

• "
"#

𝐽 )*
+

$
𝑐%&' 𝑡 = 𝐻 )*

+
$
𝑐%&' 𝑡 Δ𝑐%



Recall: Line Search (Unit 14)

• Given the linearization errors in 𝐹% 𝑐! Δ𝑐! = (𝛽 − 1)𝐹 𝑐! , the resulting Δ𝑐!  
can lead to a poor estimate for 𝑐!"# via 𝑐!"# = 𝑐! + Δ𝑐!

• Instead, Δ𝑐!  is often just used as a search direction, i.e. 𝑐!"# 	= 𝑐! + 𝛼!Δ𝑐!

• The 1D (parameterized) line 𝑐!"# 𝛼 = 𝑐! + 𝛼Δ𝑐!  is the new domain
• Find an 𝛼 with 𝐹 𝑐!"# 𝛼 = 0 simultaneously for all equations

• Safe Set methods restrict 𝛼 in various ways, e.g. 0 ≤ 𝛼 ≤ 1



Recall: Line Search (Unit 14)

• Since 𝐹 is vector valued, consider 𝑔 𝛼 = 𝐹 𝑐!"# 𝛼 5𝐹 𝑐!"# 𝛼 = 0
• Since 𝑔 𝛼 ≥ 0, solutions to 𝐹 𝑐!"# 𝛼 = 0 are minima of 𝑔 𝛼
• 𝑔 𝛼  might be strictly positive (with no 𝑔 𝛼 = 0), but minimizing 𝑔(𝛼) might 

still help to make progress towards an 𝛼 with 𝐹 𝑐!"# 𝛼 = 0

• Option 1: find simultaneous roots of the vector valued 𝐹 𝑐!"# 𝛼 = 0

• Option 2: find roots of or minimize 𝑔 𝛼 = #
8
𝐹5 𝑐!"# 𝛼 𝐹 𝑐!"# 𝛼 , to find or 

make progress towards an 𝛼 with 𝐹 𝑐!"# 𝛼 = 0  



Nonlinear Systems Problems

• Solve 𝐽4 𝑐! Δ𝑐! = (𝛽 − 1)𝐹 𝑐!  for Δ𝑐!  and use 𝑐!"# 𝑡 = 𝑐! + 𝑡Δ𝑐!  in 
𝐹 𝑐!"# 𝑡 = 0 
• Option 1: find simultaneous (for all 𝑖) roots for all the 𝑔9 𝑡 = 𝐹9 𝑐!"# 𝑡 = 0
• Here, 𝑔$, 𝑡 = 𝐽( $ 𝑐%&' 𝑡 Δ𝑐%

• Option 2: find roots of 𝑔 𝑡 = #
8
𝐹5 𝑐!"# 𝑡 𝐹 𝑐!"# 𝑡 = 0 

• Here, 𝑔,(𝑡) = '
-𝐹

+ 𝑐%&' 𝑡 𝐽( 𝑐%&' 𝑡 Δ𝑐% + '
- Δ𝑐% +𝐽(+ 𝑐%&' 𝑡 𝐹 𝑐%&' 𝑡

• Since both terms are scalars, 𝑔,(𝑡) = 𝐹+ 𝑐%&' 𝑡 𝐽( 𝑐%&' 𝑡 Δ𝑐%



Recall: Optimization Problems (Unit 14)

• Minimize the scalar cost function D𝑓(𝑐) by finding the critical points where 
∇ D𝑓 𝑐 = 𝐽 67

5(𝑐) = 𝐹 𝑐 = 0
• 𝐹% 𝑐! Δ𝑐! = 𝛽 − 1 𝐹 𝑐!  gives the search direction (as usual)
• Here, 𝐹%(𝑐) = 𝐽4 𝑐 = 𝐻 67

5(𝑐)
• So, solve 𝐻 67

5(𝑐!)Δ𝑐! = (𝛽 − 1)𝐽 67
5(𝑐!) to find the search direction Δ𝑐!  

• Option 1: find simultaneous roots of the vector valued 𝐽 67
5 𝑐!"# 𝛼 = 0, which 

are critical points of D𝑓(𝑐)
• Option 2: find roots of or minimize 𝑔 𝛼 = #

8
𝐽 67 𝑐!"# 𝛼 𝐽 67

5 𝑐!"# 𝛼 , to find or 
make progress towards critical points of D𝑓(𝑐)
• Option 3: minimize D𝑓(𝑐!"#(𝛼)) directly



Optimization Problems

• Solve 𝐻 67
5(𝑐!)Δ𝑐! = (𝛽 − 1)𝐽 67

5(𝑐!) for Δ𝑐!  and use 𝑐!"# 𝑡 = 𝑐! + 𝑡Δ𝑐!  in 
𝐽 67
5 𝑐!"# 𝑡 = 0

• Option 1: find simultaneous (for all 𝑖) roots for all the 𝑔9 𝑡 = (𝐽 67
5)9 𝑐!"# 𝑡 =

0 to find the critical points of D𝑓(𝑐)
• Here, 𝑔$, 𝑡 = (𝐻 )*

+)$ 𝑐%&' 𝑡 Δ𝑐%

• Option 2: find roots of 𝑔 𝑡 = #
8
𝐽 67 𝑐!"# 𝑡 𝐽 67

5 𝑐!"# 𝑡 = 0 to find or make 
progress towards critical points of D𝑓(𝑐)
• Here, 𝑔, 𝑡 = '

- 𝐽 )* 𝑐%&' 𝑡 𝐻 )*
+ 𝑐%&' 𝑡 Δ𝑐% + '

- Δ𝑐% +𝐻 )* 𝑐%&' 𝑡 𝐽 )*
+ 𝑐%&' 𝑡

• Since both terms are scalars, 𝑔, 𝑡 = 𝐽 )* 𝑐%&' 𝑡 𝐻 )*
+ 𝑐%&' 𝑡 Δ𝑐%

• Option 3: minimize D𝑓(𝑐!"#(𝑡)) directly (see unit 16)


