1D Optimization

Part II Roadmap

- Part I - Linear Algebra (units 1-12) $A c=b$
- Part II - Optimization (units 13-20)

- (units 13-16) Optimization \rightarrow Nonlinear Equations -> 1D roots/minima \longleftarrow Theory
- (units 17-18) Computing/Avoiding Derivatives
- (unit 19) Hack 1.0: "I give up" $H=I$ and J is mostly 0 (descent methods)

Methods

- (unit 20) Hack 2.0: "It's an ODE!?" (adaptive learning rate and momentum)

Leveraging Root Finding (from unit 15)

- Relative extrema of $g(t)$ occur at critical points where $g^{\prime}(t)=0$; thus, can use root finding on g^{\prime} to identify relative extrema
- Newton: $t^{q+1}=t^{q}-\frac{g^{\prime}\left(t^{q}\right)}{g^{\prime \prime}\left(t^{q}\right)}$ (dividing by $g^{\prime \prime}$ is even worse than dividing by $\left.g^{\prime}\right)$
- Secant: $t^{q+1}=t^{q}-g^{\prime}\left(t^{q}\right) \frac{t^{q}-t^{q-1}}{g^{\prime}\left(t^{q}\right)-g^{\prime}\left(t^{q-1}\right)}$ (can replace g^{\prime} with approximations too)
- Bisection: $g^{\prime}\left(t_{L}\right) g^{\prime}\left(t_{R}\right)<0$ is the new condition
- Mixed Methods: mixing the above (as in unit 15)

Unimodal

- Unimodal means one mode (bimodal means two modes)
- In 1D optimization, this means that the function has one relative minimum
- $g(t)$ is unimodal in [t_{L}, t_{R}] if and only if g is monotonically decreasing in $\left[t_{L}, t^{*}\right]$ and monotonically increasing in [t^{*}, t_{R}]

Successive Parabolic Interpolation

- Motivated by Newton/Secant (which use lines to find candidates for roots), use parabolas to find candidates for minima
- Given interval $\left[t_{L}, t_{R}\right]$ with midpoint $t_{M}=\frac{t_{L}+t_{R}}{2}$, create the unique parabola through t_{L}, t_{R}, and t_{M}
- A unimodal g in $\left[t_{L}, t_{R}\right]$ makes this parabola concave up
- Let $t_{\min }$ be the point where the parabola takes on its minimum value
- Assume $t_{\min }<t_{M}$ (otherwise, simply swap their names)
- If $g\left(t_{\min }\right) \leq g\left(t_{M}\right)$, discard $\left[t_{M}, t_{R}\right]$ which cannot contain the minimum
- Then, set $t_{R}=t_{M}$ and $t_{M}=t_{\text {min }}$
- If $g\left(t_{\text {min }}\right) \geq g\left(t_{M}\right)$, discard $\left[t_{L}, t_{\text {min }}\right]$ which cannot contain the minimum
- Then, set $t_{L}=t_{\text {min }}$ and $t_{M}=t_{M}$ (no change)
- Superlinear convergence rate with $p \approx 1.325$

Successive Parabolic Interpolation

- When $g\left(t_{\text {min }}\right) \leq g\left(t_{M}\right)$, discard $\left[t_{M}, t_{R}\right]$ and set $t_{R}=t_{M}$ and $t_{M}=t_{\min }$

Discarding Intervals

- Bisection required only 3 points to be able to discard an interval during root finding
- Successive Parabolic Interpolation demonstrated that 4 points is enough during minimization
- Let $\left[t_{L}, t_{R}\right]$ have two intermediate points with $t_{L}<t_{M 1}<t_{M 2}<t_{R}$ - If g is unimodal in $\left[t_{L}, t_{R}\right]$, one can safely discard either $\left[t_{L}, t_{M 1}\right]$ or $\left[t_{M 2}, t_{R}\right]$
- If $g\left(t_{M 1}\right) \leq g\left(t_{M 2}\right)$, discard $\left[t_{M 2}, t_{R}\right]$ which cannot contain the minimum
- If $g\left(t_{M 1}\right) \geq g\left(t_{M 2}\right)$, discard [$t_{L}, t_{M 1}$] which cannot contain the minimum

Golden Section Search

- After discarding an interval, either $t_{M 1}$ or $t_{M 2}$ becomes an endpoint, and keeping the other as an interior point (efficiently) reduces evaluations of g
- Let $\delta=t_{R}-t_{L}$ be the interval size and $\lambda \in(0, .5)$ be the fraction inward of $t_{M 1}$
- Then $t_{M 1}=t_{L}+\lambda \delta$, and symmetric placement gives $t_{M 2}=\left(t_{L}+\delta\right)-\lambda \delta$
- Discard the left interval (discarding the right gives the same math) to obtain $t_{L}^{\text {new }}=t_{M 1}$ and $\delta^{\text {new }}=(1-\lambda) \delta$
- Then $t_{M 2}=\left(t_{L}^{\text {new }}-\lambda \delta+\delta\right)-\lambda \delta=t_{L}^{\text {new }}+\frac{(1-2 \lambda)}{1-\lambda} \delta^{\text {new }}$ can be designated as either $t_{M 1}^{\text {new }}$ or $t_{M 2}^{\text {new }}$ if $\frac{1-2 \lambda}{1-\lambda}$ is equal to either λ or $1-\lambda$ (those are both quadratic equations)
- Of the four solutions, only one has $\lambda \in(0, .5): \lambda=\frac{3-\sqrt{5}}{2}$ with $t_{M 2}$ becoming $t_{M 1}^{n e w}$

Golden Section Search

- Rewrite: $t_{M 1}=(1-\lambda) t_{L}+\lambda t_{R}$ and $t_{M 2}=\lambda t_{L}+(1-\lambda) t_{R}$
- Switch the parameter to the more typical $\tau=1-\lambda=\frac{\sqrt{5}-1}{2}$
- Then, $t_{M 1}=\tau t_{L}+(1-\tau) t_{R}$ and $t_{M 2}=(1-\tau) t_{L}+\tau t_{R}$
- If $g\left(t_{M 1}\right) \leq g\left(t_{M 2}\right)$, discard $\left[t_{M 2}, t_{R}\right]$, set $t_{R}=t_{M 2}, t_{M 2}=t_{M 1}$, and recompute $t_{M 1}$
- If $g\left(t_{M 1}\right) \geq g\left(t_{M 2}\right)$, discard $\left[t_{L}, t_{M 1}\right]$, set $t_{L}=t_{M 1}, t_{M 1}=t_{M 2}$, and recompute $t_{M 2}$
- Stop when the interval size is small (as usual)
- Linear convergence rate $(p=1)$ with $C=\frac{(1-\lambda) \delta}{\delta}=\tau \approx .618$

Golden Section Search

- If $g\left(t_{M 1}\right) \geq g\left(t_{M 2}\right)$, discard $\left[t_{L}, t_{M 1}\right]$, set $t_{L}=t_{M 1}, t_{M 1}=t_{M 2}$, recompute $t_{M 2}$

Mixed Methods

- Given a unimodal $\left[t_{L}, t_{R}\right]$
- Iterate with Succsessive Parabolic Interpolation as long as the iterates stay inside the interval
- When iteration attempts to leave the interval, use prior iterates to shrink the interval as much as possible (while still containing the minima)
- If Successive Parabolic Interpolation attempts to leave the current interval, instead use Golden Section Search to continue shrinking the interval
- Leverages the speed of Successive Parabolic Interpolation, while still guaranteeing convergence via Golden Section Search
- Many/various strategies exist

Function/Derivative Requirements

- All methods require evaluation of the function g
- Root finding approaches differentiate g and solve $g^{\prime}(t)=0$ to identify critical points
- All root finding methods require evaluation of the function, which is g^{\prime} here - Newton (and mixed methods using Newton) requires the derivative of the function, which is $g^{\prime \prime}$ here

Recall: Useful Derivatives (unit 15)

- $\frac{\partial}{\partial t} c^{q+1}(t)=\Delta c^{q}$, since $c^{q+1}(t)=c^{q}+t \Delta c^{q}$
- $\frac{\partial}{\partial t} F\left(c^{q+1}(t)\right)=J_{F}\left(c^{q+1}(t)\right) \Delta c^{q}$ and $\frac{\partial}{\partial t} F^{T}\left(c^{q+1}(t)\right)=\left(\Delta c^{q}\right)^{T} J_{F}^{T}\left(c^{q+1}(t)\right)$
- $\frac{\partial}{\partial t} F_{i}\left(c^{q+1}(t)\right)=\left(U_{F}\right)_{i}\left(c^{q+1}(t)\right) \Delta c^{q}$ where the $F_{i}\left(c^{q+1}(t)\right)$ are the scalar row entries of $\stackrel{\underset{F}{d t}\left(c^{q+1}(t)\right)}{ }$
- Scalar $\hat{f}\left(c^{q+1}(t)\right)$ has system $J_{\hat{f}}^{T}\left(c^{q+1}(t)\right)=0$ for critical points
- $\frac{\partial}{\partial t} J_{\hat{f}}^{T}\left(c^{q+1}(t)\right)=H_{\hat{f}}^{T}\left(c^{q+1}(t)\right) \Delta c^{q}$ and $\frac{\partial}{\partial t} J_{\hat{f}}\left(c^{q+1}(t)\right)=\left(\Delta c^{q}\right)^{T} H_{\hat{f}}\left(c^{q+1}(t)\right)$

$$
\text { - } \frac{\partial}{\partial t}\left(J_{\hat{f}}^{T}\right)_{i}\left(c^{q+1}(t)\right)=\left(H_{\hat{f}}^{T}\right)_{i}\left(c^{q+1}(t)\right) \Delta c^{q}
$$

Additional Useful Derivatives

- $\frac{\partial}{\partial t} J_{F}\left(c^{q+1}(t)\right)=\left(\Delta c^{q}\right)^{T} H_{F}\left(c^{q+1}(t)\right)$
- H_{F} is a rank 3 tensor of all $2^{\text {nd }}$ derivatives of F
- $\frac{\partial}{\partial t}\left(J_{F}\right)_{i}\left(c^{q+1}(t)\right)=\left(\Delta c^{q}\right)^{T}\left(H_{F}\right)_{i}\left(c^{q+1}(t)\right)$
- $\frac{\partial}{\partial t} H_{\hat{f}}^{T}\left(c^{q+1}(t)\right)=\left(\Delta c^{q}\right)^{T} O M G_{\hat{f}}^{T}\left(c^{q+1}(t)\right)$
- $O M G_{\hat{f}}^{T}$ is a rank 3 tensor of all $3^{\text {rd }}$ derivatives of \hat{f}
- $\frac{\partial}{\partial t}\left(H_{\hat{f}}^{T}\right)_{i}\left(c^{q+1}(t)\right)=\left(\Delta c^{q}\right)^{T}\left(O M G_{\hat{f}}^{T}\right)_{i}\left(c^{q+1}(t)\right)$

Recall: Nonlinear Systems Problems (unit 15)

- Solve $J_{F}\left(c^{q}\right) \Delta c^{q}=(\beta-1) F\left(c^{q}\right)$ for Δc^{q} and use $c^{q+1}(t)=c^{q}+t \Delta c^{q}$ in $F\left(c^{q+1}(t)\right)=0$
- Option 1: find simultaneous (for all i) roots for all the $g_{i}(t)=F_{i}\left(c^{q+1}(t)\right)=0$
- Here, $g_{i}^{\prime}(t)=\left(J_{F}\right)_{i}\left(c^{q+1}(t)\right) \Delta c^{q}$
- Option 2: find roots of $g(t)=\frac{1}{2} F^{T}\left(c^{q+1}(t)\right) F\left(c^{q+1}(t)\right)=0$
- Here, $g^{\prime}(t)=\frac{1}{2} F^{T}\left(c^{q+1}(t)\right) J_{F}\left(c^{q+1}(t)\right) \Delta c^{q}+\frac{1}{2}\left(\Delta c^{q}\right)^{T} J_{F}^{T}\left(c^{q+1}(t)\right) F\left(c^{q+1}(t)\right)$
- Since both terms are scalars, $g^{\prime}(t)=F^{T}\left(c^{q+1}(t)\right) J_{F}\left(c^{q+1}(t)\right) \Delta c^{q}$

Nonlinear Systems Problems

- Solve $J_{F}\left(c^{q}\right) \Delta c^{q}=(\beta-1) F\left(c^{q}\right)$ for Δc^{q} and use $c^{q+1}(t)=c^{q}+t \Delta c^{q}$ in $F\left(c^{q+1}(t)\right)=0$
- Option 1: find simultaneous (for all i) minima for all the $g_{i}(t)=F_{i}\left(c^{q+1}(t)\right)$ aiming for roots where all $F_{i}\left(c^{q+1}(t)\right)=0$
- Here, $g_{i}^{\prime}(t)=\left(J_{F}\right)_{i}\left(c^{q+1}(t)\right) \Delta c^{q}$ and $g_{i}^{\prime \prime}(t)=\left(\Delta c^{q}\right)^{T}\left(H_{F}\right)_{i}\left(c^{q+1}(t)\right) \Delta c^{q}$
- Option 2: minimize $g(t)=\frac{1}{2} F^{T}\left(c^{q+1}(t)\right) F\left(c^{q+1}(t)\right)$ aiming for its roots
- Here, $g^{\prime}(t)=F^{T}\left(c^{q+1}(t)\right) J_{F}\left(c^{q+1}(t)\right) \Delta c^{q}$
- $g^{\prime \prime}(t)=F^{T}\left(c^{q+1}(t)\right)\left(\Delta c^{q}\right)^{T} H_{F}\left(c^{q+1}(t)\right) \Delta c^{q}+\left(\Delta c^{q}\right)^{T} J_{F}^{T}\left(c^{q+1}(t)\right) J_{F}\left(c^{q+1}(t)\right) \Delta c^{q}$

Recall: Optimization Problems (unit 15)

- Solve $H_{\hat{f}}^{T}\left(c^{q}\right) \Delta c^{q}=(\beta-1) J_{\hat{f}}^{T}\left(c^{q}\right)$ for Δc^{q} and use $c^{q+1}(t)=c^{q}+t \Delta c^{q}$ in $J_{\hat{f}}^{T}\left(c^{q+1}(t)\right)=0$
- Option 1: find simultaneous (for all i) roots for all the $g_{i}(t)=\left(J_{\hat{f}}^{T}\right)_{i}\left(c^{q+1}(t)\right)=$ 0 to find the critical points of $\hat{f}(c)$
- Here, $g_{i}^{\prime}(t)=\left(H_{\hat{f}}^{T}\right)_{i}\left(c^{q+1}(t)\right) \Delta c^{q}$
- Option 2: find roots of $g(t)=\frac{1}{2} J_{\hat{f}}\left(c^{q+1}(t)\right) J_{\hat{f}}^{T}\left(c^{q+1}(t)\right)=0$ to find or make progress towards critical points of $\hat{f}(c)$
- Here, $g^{\prime}(t)=\frac{1}{2} J_{\hat{f}}\left(c^{q+1}(t)\right) H_{\hat{f}}^{T}\left(c^{q+1}(t)\right) \Delta c^{q}+\frac{1}{2}\left(\Delta c^{q}\right)^{T} H_{\hat{f}}\left(c^{q+1}(t)\right) J_{\hat{f}}^{T}\left(c^{q+1}(t)\right)$
- Since both terms are scalars, $g^{\prime}(t)=J_{\hat{f}}\left(c^{q+1}(t)\right) H_{\hat{f}}^{T}\left(c^{q+1}(t)\right) \Delta c^{q}$
- Option 3: minimize $\hat{f}\left(c^{q+1}(t)\right)$ directly (see unit 16)

Optimization Problems

- Solve $H_{\hat{f}}^{T}\left(c^{q}\right) \Delta c^{q}=(\beta-1) J_{f}^{T}\left(c^{q}\right)$ for Δc^{q} and use $c^{q+1}(t)=c^{q}+t \Delta c^{q}$ in $J_{f}^{T}\left(c^{q+1}(t)\right)=0$
- Option 1: find simultaneous (for all i) minima for all the $g_{i}(t)=\left(J_{\hat{f}}^{T}\right)_{i}\left(c^{q+1}(t)\right)$ aiming for the roots which are critical points of $\hat{f}(c)$
- Here, $g_{i}^{\prime}(t)=\left(H_{\hat{f}}^{T}\right)_{i}\left(c^{q+1}(t)\right) \Delta c^{q}$ and $g_{i}^{\prime \prime}(t)=\left(\Delta c^{q}\right)^{T}\left(O M G_{f}^{T}\right)_{i}\left(c^{q+1}(t)\right) \Delta c^{q}$
- Option 2: minimize $g(t)=\frac{1}{2} J_{\hat{f}}\left(c^{q+1}(t)\right) J_{\hat{f}}^{T}\left(c^{q+1}(t)\right)$ aiming for the roots which are critical points of $\hat{f}(c)$
- Here, $g^{\prime}(t)=J_{\hat{f}}\left(c^{q+1}(t)\right) H_{\hat{f}}^{T}\left(c^{q+1}(t)\right) \Delta c^{q}$
- $g^{\prime \prime}(t)=J_{\hat{f}}\left(c^{q+1}(t)\right)\left(\Delta c^{q}\right)^{T} O M G_{f}^{T}\left(c^{q+1}(t)\right) \Delta c^{q}+\left(\Delta c^{q}\right)^{T} H_{\hat{f}}\left(c^{q+1}(t)\right) H_{\hat{f}}^{T}\left(c^{q+1}(t)\right) \Delta c^{q}$
- Option 3: minimize $g(t)=\hat{f}\left(c^{q+1}(t)\right)$ directly
- $g^{\prime}(t)=J_{\hat{f}}\left(c^{q+1}(t)\right) \Delta c^{q}$ and $g^{\prime \prime}(t)=\left(\Delta c^{q}\right)^{T} H_{\hat{f}}\left(c^{q+1}(t)\right) \Delta c^{q}$

