1D Optimization

Part II Roadmap

- Part I Linear Algebra (units 1-12) Ac = b
 - linearize

line search

Theory

Methods

- Part II Optimization (units 13-20)
 - (units 13-16) Optimization -> Nonlinear Equations -> 1D roots/minima ->
 - (units 17-18) Computing/Avoiding Derivatives
 - (unit 19) Hack 1.0: "I give up" H = I and J is mostly 0 (descent methods)
 - (unit 20) Hack 2.0: "It's an ODE!?" (adaptive learning rate and momentum)

Leveraging Root Finding (from unit 15)

• Relative extrema of g(t) occur at critical points where g'(t) = 0; thus, can use root finding on g' to identify relative extrema

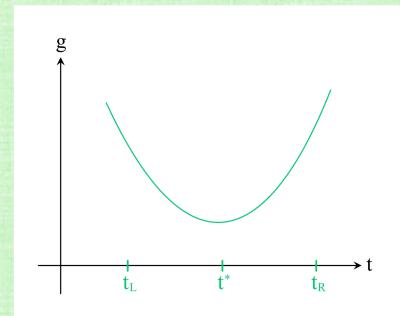
• Newton:
$$t^{q+1} = t^q - \frac{g'(t^q)}{g''(t^q)}$$
 (dividing by g'' is even worse than dividing by g')

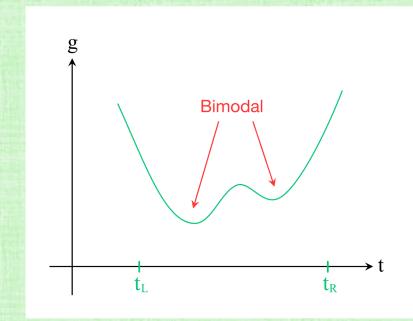
• Secant: $t^{q+1} = t^q - g'(t^q) \frac{t^{q-t^{q-1}}}{g'(t^q) - g'(t^{q-1})}$ (can replace g' with approximations too)

- Bisection: $g'(t_L)g'(t_R) < 0$ is the new condition
- Mixed Methods: mixing the above (as in unit 15)

Unimodal

- Unimodal means one mode (bimodal means two modes)
- In 1D optimization, this means that the function has one relative minimum
- g(t) is unimodal in $[t_L, t_R]$ if and only if g is monotonically decreasing in $[t_L, t^*]$ and monotonically increasing in $[t^*, t_R]$



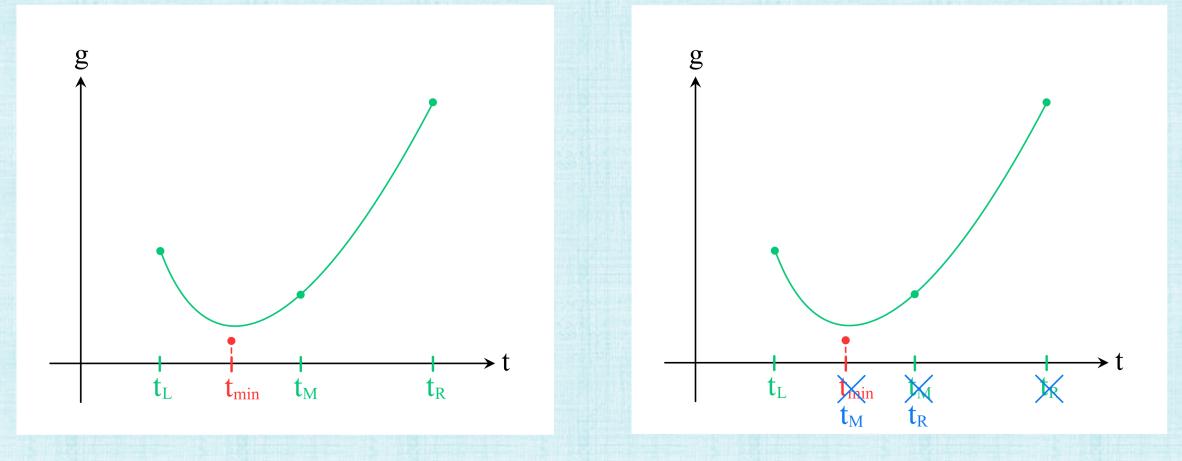


Successive Parabolic Interpolation

- Motivated by Newton/Secant (which use lines to find candidates for roots), use parabolas to find candidates for minima
- Given interval $[t_L, t_R]$ with midpoint $t_M = \frac{t_L + t_R}{2}$, create the unique parabola through t_L, t_R , and t_M
 - A unimodal g in $[t_L, t_R]$ makes this parabola concave up
 - Let t_{min} be the point where the parabola takes on its minimum value
- Assume $t_{min} < t_M$ (otherwise, simply swap their names)
- If $g(t_{min}) \le g(t_M)$, discard $[t_M, t_R]$ which cannot contain the minimum • Then, set $t_R = t_M$ and $t_M = t_{min}$
- If $g(t_{min}) \ge g(t_M)$, discard $[t_L, t_{min}]$ which cannot contain the minimum • Then, set $t_L = t_{min}$ and $t_M = t_M$ (no change)
- Superlinear convergence rate with $p \approx 1.325$

Successive Parabolic Interpolation

• When $g(t_{min}) \leq g(t_M)$, discard $[t_M, t_R]$ and set $t_R = t_M$ and $t_M = t_{min}$



Discarding Intervals

- Bisection required only 3 points to be able to discard an interval during root finding
- Successive Parabolic Interpolation demonstrated that 4 points is enough during minimization
- Let [t_L, t_R] have two intermediate points with t_L < t_{M1} < t_{M2} < t_R
 If g is unimodal in [t_L, t_R], one can safely discard either [t_L, t_{M1}] or [t_{M2}, t_R]
 If g(t_{M1}) ≤ g(t_{M2}), discard [t_{M2}, t_R] which cannot contain the minimum
 If g(t_{M1}) ≥ g(t_{M2}), discard [t_L, t_{M1}] which cannot contain the minimum

Golden Section Search

- After discarding an interval, either t_{M1} or t_{M2} becomes an endpoint, and keeping the other as an interior point (efficiently) reduces evaluations of g
- Let $\delta = t_R t_L$ be the interval size and $\lambda \in (0, .5)$ be the fraction inward of t_{M1}
- Then $t_{M1} = t_L + \lambda \delta$, and symmetric placement gives $t_{M2} = (t_L + \delta) \lambda \delta$
- Discard the left interval (discarding the right gives the same math) to obtain $t_L^{new} = t_{M1}$ and $\delta^{new} = (1 \lambda)\delta$
- Then $t_{M2} = (t_L^{new} \lambda \delta + \delta) \lambda \delta = t_L^{new} + \frac{(1-2\lambda)}{1-\lambda} \delta^{new}$ can be designated as either t_{M1}^{new} or t_{M2}^{new} if $\frac{1-2\lambda}{1-\lambda}$ is equal to either λ or 1λ (those are both quadratic equations)
- Of the four solutions, only one has $\lambda \in (0, .5)$: $\lambda = \frac{3-\sqrt{5}}{2}$ with t_{M2} becoming t_{M1}^{new}

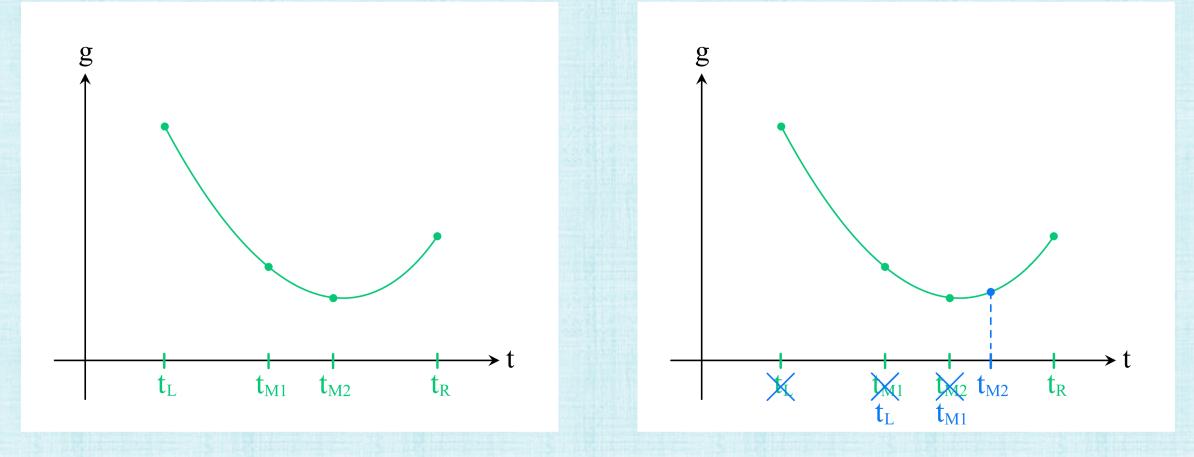
Golden Section Search

- Rewrite: $t_{M1} = (1 \lambda)t_L + \lambda t_R$ and $t_{M2} = \lambda t_L + (1 \lambda)t_R$
- Switch the parameter to the more typical $\tau = 1 \lambda = \frac{\sqrt{5}-1}{2}$
- Then, $t_{M1} = \tau t_L + (1 \tau) t_R$ and $t_{M2} = (1 \tau) t_L + \tau t_R$
- If $g(t_{M1}) \le g(t_{M2})$, discard $[t_{M2}, t_R]$, set $t_R = t_{M2}$, $t_{M2} = t_{M1}$, and recompute t_{M1}
- If $g(t_{M1}) \ge g(t_{M2})$, discard $[t_L, t_{M1}]$, set $t_L = t_{M1}$, $t_{M1} = t_{M2}$, and recompute t_{M2}
- Stop when the interval size is small (as usual)

• Linear convergence rate (p = 1) with $C = \frac{(1-\lambda)\delta}{\delta} = \tau \approx .618$

Golden Section Search

• If $g(t_{M1}) \ge g(t_{M2})$, discard $[t_L, t_{M1}]$, set $t_L = t_{M1}$, $t_{M1} = t_{M2}$, recompute t_{M2}



Mixed Methods

- Given a unimodal $[t_L, t_R]$
- Iterate with Successive Parabolic Interpolation as long as the iterates stay inside the interval
 - When iteration attempts to leave the interval, use prior iterates to shrink the interval as much as possible (while still containing the minima)
- If Successive Parabolic Interpolation attempts to leave the current interval, instead use Golden Section Search to continue shrinking the interval
- Leverages the speed of Successive Parabolic Interpolation, while still guaranteeing convergence via Golden Section Search
- Many/various strategies exist

Function/Derivative Requirements

- All methods require evaluation of the function g
- Root finding approaches differentiate g and solve g'(t) = 0 to identify critical points
 - All root finding methods require evaluation of the function, which is g' here
 - Newton (and mixed methods using Newton) requires the derivative of the function, which is g'' here

Recall: Useful Derivatives (unit 15)

• $\frac{\partial}{\partial t}c^{q+1}(t) = \Delta c^q$, since $c^{q+1}(t) = c^q + t\Delta c^q$

•
$$\frac{\partial}{\partial t}F(c^{q+1}(t)) = J_F(c^{q+1}(t))\Delta c^q$$
 and $\frac{\partial}{\partial t}F^T(c^{q+1}(t)) = (\Delta c^q)^T J_F^T(c^{q+1}(t))$
• $\frac{\partial}{\partial t}F_i(c^{q+1}(t)) = (J_F)_i(c^{q+1}(t))\Delta c^q$ where the $F_i(c^{q+1}(t))$ are the scalar row entries of $F(c^{q+1}(t))$

• Scalar $\hat{f}(c^{q+1}(t))$ has system $J_{\hat{f}}^T(c^{q+1}(t)) = 0$ for critical points • $\frac{\partial}{\partial t}J_{\hat{f}}^T(c^{q+1}(t)) = H_{\hat{f}}^T(c^{q+1}(t))\Delta c^q$ and $\frac{\partial}{\partial t}J_{\hat{f}}(c^{q+1}(t)) = (\Delta c^q)^T H_{\hat{f}}(c^{q+1}(t))$ • $\frac{\partial}{\partial t}(J_{\hat{f}}^T)_i(c^{q+1}(t)) = (H_{\hat{f}}^T)_i(c^{q+1}(t))\Delta c^q$

Additional Useful Derivatives

• $\frac{\partial}{\partial t} J_F(c^{q+1}(t)) = (\Delta c^q)^T H_F(c^{q+1}(t))$ • H_F is a rank 3 tensor of all 2nd derivatives of F• $\frac{\partial}{\partial t} (J_F)_i (c^{q+1}(t)) = (\Delta c^q)^T (H_F)_i (c^{q+1}(t))$

• $\frac{\partial}{\partial t} H_{\hat{f}}^T (c^{q+1}(t)) = (\Delta c^q)^T OMG_{\hat{f}}^T (c^{q+1}(t))$ • $OMG_{\hat{f}}^T$ is a rank 3 tensor of all 3rd derivatives of \hat{f} • $\frac{\partial}{\partial t} (H_{\hat{f}}^T)_i (c^{q+1}(t)) = (\Delta c^q)^T (OMG_{\hat{f}}^T)_i (c^{q+1}(t))$

Recall: Nonlinear Systems Problems (unit 15)

- Solve $J_F(c^q)\Delta c^q = (\beta 1)F(c^q)$ for Δc^q and use $c^{q+1}(t) = c^q + t\Delta c^q$ in $F(c^{q+1}(t)) = 0$
- <u>Option 1</u>: find simultaneous (for all *i*) roots for all the $g_i(t) = F_i(c^{q+1}(t)) = 0$ • Here, $g'_i(t) = (J_F)_i(c^{q+1}(t))\Delta c^q$
- <u>Option 2</u>: find roots of $g(t) = \frac{1}{2}F^T(c^{q+1}(t))F(c^{q+1}(t)) = 0$
 - Here, $g'(t) = \frac{1}{2} F^T (c^{q+1}(t)) J_F (c^{q+1}(t)) \Delta c^q + \frac{1}{2} (\Delta c^q)^T J_F^T (c^{q+1}(t)) F(c^{q+1}(t))$
 - Since both terms are scalars, $g'(t) = F^T(c^{q+1}(t))J_F(c^{q+1}(t))\Delta c^q$

Nonlinear Systems Problems

• Solve $J_F(c^q)\Delta c^q = (\beta - 1)F(c^q)$ for Δc^q and use $c^{q+1}(t) = c^q + t\Delta c^q$ in $F(c^{q+1}(t)) = 0$

- <u>Option 1</u>: find simultaneous (for all *i*) minima for all the $g_i(t) = F_i(c^{q+1}(t))$ aiming for roots where all $F_i(c^{q+1}(t)) = 0$
 - Here, $g'_{i}(t) = (J_{F})_{i}(c^{q+1}(t))\Delta c^{q}$ and $g''_{i}(t) = (\Delta c^{q})^{T}(H_{F})_{i}(c^{q+1}(t))\Delta c^{q}$
- <u>Option 2</u>: minimize $g(t) = \frac{1}{2}F^T(c^{q+1}(t))F(c^{q+1}(t))$ aiming for its roots • Here, $g'(t) = F^T(c^{q+1}(t))J_F(c^{q+1}(t))\Delta c^q$

• $g''(t) = F^T \left(c^{q+1}(t) \right) (\Delta c^q)^T H_F \left(c^{q+1}(t) \right) \Delta c^q + (\Delta c^q)^T J_F^T \left(c^{q+1}(t) \right) J_F \left(c^{q+1}(t) \right) \Delta c^q$

Recall: Optimization Problems (unit 15)

- Solve $H_{\hat{f}}^T(c^q)\Delta c^q = (\beta 1)J_{\hat{f}}^T(c^q)$ for Δc^q and use $c^{q+1}(t) = c^q + t\Delta c^q$ in $J_{\hat{f}}^T(c^{q+1}(t)) = 0$
- <u>Option 1</u>: find simultaneous (for all *i*) roots for all the $g_i(t) = (J_{\hat{f}}^T)_i (c^{q+1}(t)) = 0$ to find the critical points of $\hat{f}(c)$ • Here, $g'_i(t) = (H_{\hat{f}}^T)_i (c^{q+1}(t)) \Delta c^q$
- <u>Option 2</u>: find roots of $g(t) = \frac{1}{2}J_{\hat{f}}(c^{q+1}(t))J_{\hat{f}}^T(c^{q+1}(t)) = 0$ to find or make progress towards critical points of $\hat{f}(c)$
 - Here, $g'(t) = \frac{1}{2} J_{\hat{f}}(c^{q+1}(t)) H_{\hat{f}}^T(c^{q+1}(t)) \Delta c^q + \frac{1}{2} (\Delta c^q)^T H_{\hat{f}}(c^{q+1}(t)) J_{\hat{f}}^T(c^{q+1}(t))$
 - Since both terms are scalars, $g'(t) = J_{\hat{f}}(c^{q+1}(t))H_{\hat{f}}^T(c^{q+1}(t))\Delta c^q$
- Option 3: minimize $\hat{f}(c^{q+1}(t))$ directly (see unit 16)

Optimization Problems

• Solve $H_{\hat{f}}^T(c^q)\Delta c^q = (\beta - 1)J_{\hat{f}}^T(c^q)$ for Δc^q and use $c^{q+1}(t) = c^q + t\Delta c^q$ in $J_{\hat{f}}^T(c^{q+1}(t)) = 0$

• <u>Option 1</u>: find simultaneous (for all *i*) minima for all the $g_i(t) = (J_{\hat{f}}^T)_i(c^{q+1}(t))$ aiming for the roots which are critical points of $\hat{f}(c)$

• Here, $g'_{i}(t) = (H_{\hat{f}}^{T})_{i}(c^{q+1}(t))\Delta c^{q}$ and $g''_{i}(t) = (\Delta c^{q})^{T}(OMG_{\hat{f}}^{T})_{i}(c^{q+1}(t))\Delta c^{q}$

• <u>Option 2</u>: minimize $g(t) = \frac{1}{2} J_{\hat{f}}(c^{q+1}(t)) J_{\hat{f}}^T(c^{q+1}(t))$ aiming for the roots which are critical points of $\hat{f}(c)$

• Here, $g'(t) = J_{\hat{f}}(c^{q+1}(t))H_{\hat{f}}^{T}(c^{q+1}(t))\Delta c^{q}$

• $g''(t) = J_{\hat{f}}(c^{q+1}(t))(\Delta c^q)^T OMG_{\hat{f}}^T(c^{q+1}(t))\Delta c^q + (\Delta c^q)^T H_{\hat{f}}(c^{q+1}(t)) H_{\hat{f}}^T(c^{q+1}(t))\Delta c^q$

• Option 3: minimize $g(t) = \hat{f}(c^{q+1}(t))$ directly

• $g'(t) = J_{\hat{f}}(c^{q+1}(t))\Delta c^{q}$ and $g''(t) = (\Delta c^{q})^{T} H_{\hat{f}}(c^{q+1}(t))\Delta c^{q}$