Computing Derivatives

Part II Roadmap

- Part I - Linear Algebra (units 1-12) $A c=b$
- Part II - Optimization (units 13-20)

- (units 13-16) Optimization -> Nonlinear Equations -> 1D roots/minima

Theory

- (units 17-18) Computing/Avoiding Derivatives
- (unit 19) Hack 1.0: "I give up" $H=I$ and J is mostly 0 (descent methods)

Methods

- (unit 20) Hack 2.0: "It's an ODE!?" (adaptive learning rate and momentum)

Smoothness

- Discontinuous functions cannot be differentiated
- Even methods that don't require derivatives struggle when functions are discontinuous
- Continuous functions may have kinks (discontinuities in derivatives)
- Discontinuous derivatives can cause methods that depend on derivatives to fail, since function behavior cannot be adequately predicted from one side of the kink to the other
- Typically, functions need to be "smooth enough", which has varying meaning depending on the approach
- Specialty approaches exist for special classes of functions, e.g. linear algebra, linear programming, convex optimization, second order cone program (SOCP), etc.
- Nonlinear Systems/Optimization are more difficult, and best practices/techniques often do not exist

Biological Neurons (towards "real" Al)

- The aim is to mimic biological (typically human) neural networks and learning
- Biological neurons are "all or none", which motivates similar strategies in artificial neural networks
- This leads to a discontinuous function, with an identically zero derivative everywhere else
- Disastrous for optimization!
- Biological neurons fire with increased frequency for stronger signals
- This leads to a piecewise constant and discontinuous derivative
- Problematic for optimization!
- Smoothing allows optimization to "work", i.e. allows one to minimize the loss to find the parameters/coefficients for the network architecture

Heaviside Function

- $H(x)=1$ for $x \geq 0$, and $H(x)=0$ for $x<0$
- Motivated by biological neurons being "all or none"
- Has a discontinuity at 0 and an identically zero derivative everywhere else

Sigmoid Function

- Any smoothed Heaviside function, e.g. $S(x)=\frac{1}{1+e^{-x}}$ (there are many options)
- Continuous and monotonically increasing, although the derivative is close to zero further away from $x=0$

Rectifier Functions

- $R(x)=\max (x, 0)$ or similar functions which are continuous and have increasing values
- Motivated by biological neurons firing with increased frequency for stronger signals
- Piecewise constant and discontinuous derivative causes issues with optimization

Softplus Function

- Softplus function $S P(x)=\log \left(1+e^{x}\right)$ smooths the discontinuous derivative typical of rectifier functions

Leaky Rectifier Function

- Modifies the negative part of a rectifier function to also have a positive slope instead of being set to zero
- Can be smoothed (as well)

Arg/Soft Max

- Arg Max returns 1 for the largest argument and 0 for the other arguments
- E.g. $(.99,1) \rightarrow(0,1),(1, .99) \rightarrow(1,0)$, etc.
- Highly discontinuous!
- Soft Max is a smoothed version, e.g. $\left(x_{1}, x_{2}\right) \rightarrow\left(\frac{e^{x_{1}}}{e^{x_{1}}+e^{x_{2}}}, \frac{e^{x_{2}}}{e^{x_{1}}+e^{x_{2}}}\right)$
- This is a smooth function of the arguments, differentiable, etc.
- Variants/weightings exist to make it closer/further from Arg Max (while preserving differentiability)

Binary Classification

- Training data $\left(x_{i}, y_{i}\right)$ where the $y_{i}= \pm 1$ are binary class labels
- Find plane $\hat{n}^{T}\left(x-x_{o}\right)=0$ that separates the data between the two class labels (\hat{n} is the unit normal and x_{o} is a point on the plane)
- The closest x_{i} on each side of the plane are called support vectors
- If the separating plane is equidistant between the support vectors, then they lie on parallel planes: $\hat{n}^{T}\left(x-x_{o}\right)= \pm \epsilon$ (where ϵ is the margin)
- Dividing by ϵ to normalize gives $c^{T}\left(x-x_{0}\right)= \pm 1$ where c points in the normal direction (but is not unit length); then, maximizing the margin ϵ is equivalent to minimizing $\|c\|_{2}$

Binary Classification

- Minimize $\hat{f}(c)=\frac{1}{2} c^{T} c$ subject to inequality constraints:
- $c^{T}\left(x_{i}-x_{o}\right) \geq 1$ when $y_{i}=1$, and $c^{T}\left(x_{i}-x_{o}\right) \leq-1$ when $y_{i}=-1$
- Can combine these into $y_{i} c^{T}\left(x_{i}-x_{o}\right) \geq 1$ for every data point
- Alternatively, $y_{i}\left(c^{T} x_{i}-b\right) \geq 1$ with a scalar unknown $b=c^{T} x_{o}$
- When approached via unconstrained optimization, Heaviside functions can be used to incorporate the constraints into the cost function
- Subsequently smoothing those Heaviside functions is called soft-margin
- Note: new data is classified (via inference) based on the sign of $c^{T} x_{n e w}-b$

(Inequality) Constrained Optimization

- Minimize $\hat{f}(c)$ subject to $\hat{g}(c) \geq 0($ or $\hat{g}(c)>0)$
- Create a penalty term $-H\left(-\hat{g}_{i}(c)\right) \hat{g}_{i}(c)$, which is nonzero only when $\hat{g}_{i}(c)<0$
- This penalty term is minimized by forcing negative $\hat{g}_{i}(c)$ towards zero (as desired)
- Given a diagonal matrix D of (positive) weights indicating the relative importance of various constraints, unconstrained optimization can be used to minimize $\hat{f}(c)-\sum_{i} H\left(-\hat{e}_{i}^{T} D \hat{g}(c)\right) \hat{e}_{i}^{T} D \hat{g}(c)$
- This requires differentiating the non-smooth Heaviside function
- Smoothing the Heaviside function makes the modified cost function differentiable

Symbolic Differentiation

- When a function is known in closed form, it can be differentiated by hand
- Software packages such as Mathematica can aid in symbolic differentiation (and subsequent simplification)
- Some benefits of knowing the closed form derivative:
- Provides a better understanding of the underlying problem
- Enables well thought out smoothing/regularization
- Allows one to implement more efficient code
- Subsequently allows access to higher derivatives
- Some of the aforementioned benefits enable the use of better solvers
- Helps to write/maintain code with less bugs
- Etc.

Example

- Suppose a code has the following functons:
- $f(t)=t^{2}-4$ with $f^{\prime}(t)=2 t$, and $g(t)=t-2$ with $g^{\prime}(t)=1$
- Suppose another part of the code combines these functions:
- $h(t)=\frac{f(t)}{g(t)}$ with $h^{\prime}(t)=\frac{g(t) f^{\prime}(t)-f(t) g^{\prime}(t)}{(g(t))^{2}}$
- Then $h(2)=\frac{f(2)}{g(2)}=\frac{0}{0}$ and $h^{\prime}(2)=\frac{g(2) f^{\prime}(2)-f(2) g^{\prime}(2)}{(g(2))^{2}}=\frac{0 \cdot 4-0 \cdot 1}{0^{2}}$
- Adding a small $\epsilon>0$ to the denominators (to avoid division by zero) gives $h(2)=0$ and $h^{\prime}(2)=0$
- Adding a small $\epsilon>0$ to denominators is often done whenever the denominators are small, making $h(t) \approx 0$ and $h^{\prime}(t) \approx 0$ for $t \approx 2$ as well
- Of course, $h(t)=t+2$ is a straight line with $h(2)=4$ and $h^{\prime}(t)=1$ everywhere

Symbolic Differentiation of Code

- Sometimes a function is not analytically known and/or merely represents the output of some source code
- But, parts of the code may have known derivatives, and those known derivatives can be utilized/leveraged via the mathematical rules for differentiation
- Moreover, when parts of the code are always used consecutively, they can be merged; subsequently, merged code with known derivatives in each part can often have the derivative treatment simplified for accuracy/robustness/efficiency

Differentiate the Right Thing

- Consider an iterative solver (e.g. CG, Minres, etc.) that solves $A c=b$ to find c given b
- Sometimes the code is enormous, complicated, confusing, a black box, etc. (basically impenetrable)
- It is tempting to consider some of the code bases that claim to differentiate such chunks of code
- Sometimes these approaches work, and the answers are reasonable
- But, it is often difficult to know whether or not computational inaccuracies (as discussed in this class) are having an adverse effect on such a black box approach
- Alternatively, when invertible: $c=A^{-1} b$ and $\frac{\partial c_{k}}{\partial b_{i}}=\tilde{a}_{k i}$ where $\tilde{a}_{k i}$ is an entry in A^{-1}
- A similar approach can be taken for A^{+}, which can be estimated robustly via PCA, the Power Method, etc.
- The derivative is independent of the iterative solver (CG, Minres, etc.) and the errors that might accumulate within the iterative solver due to poor conditioning
- More recently, this sort of approach is being referred to as an implicit layer

The Used Car Salesman

- Beware of the claim: it is good to be able to use something without understanding it
- The claim is often true, and many of us enjoy driving our cars without understanding much of what is under the hood
- However, those who design cars, manufacture cars, repair cars, etc. benefit greatly from understanding as much as possible about them (and the rest of us benefit enormously from their expertise)
- Though, admittedly, there are those in the car business, such as those who sell used cars, who legitimately don't require any real knowledge/expertise
- The question is: what kind of computer scientist do you want to be?

Oversimplified Thinking

- Beware of claims that drastically oversimplify
- E.g., some say that code is very simple and merely consists of simple operations like add/subtract/multiply/divide that are easily differentiated
- However, in reality, even the simple $z=x+y$ has subtleties that can matter
- E.g. the computer actually executes $z=\operatorname{round}(x+y)$
- Too many claim that issues they have not carefully considered don't matter in practice; meanwhile, many state-of-the-art practices in ML/DL are not well understood in the first place (leaving one to question these sorts of claims)

Finite Differences

- Derivatives can be approximated by various formulas, similar to how the Secant method was derived from Newton's method
- Given a small perturbation $h>0$, Taylor expansions can be manipulated to write:
- Forward Difference: $g^{\prime}(t)=\frac{g(t+h)-g(t)}{h}+O(h), 1^{\text {st }}$ order accurate
- Backward Difference: $g^{\prime}(t)=\frac{g(t)-g(t-h)}{h}+O(h), 1^{\text {st }}$ order accurate
- Central Difference: $g^{\prime}(t)=\frac{g(t+h)-g(t-h)}{2 h}+O\left(h^{2}\right), 2^{\text {nd }}$ order accurate
- Second Derivative: $g^{\prime \prime}(t)=\frac{g(t+h)-2 g(t)+g(t-h)}{h^{2}}+O\left(h^{2}\right), 2^{\text {nd }}$ order accurate
- These approximations can be evaluated even when $g(t)$ is not known precisely, but merely represents the output of some code with input t

Finite Differences (Drawbacks)

- Finite Differences only give an approximation to the derivative, and contain truncation errors related to the perturbation size h
- One has to reason about the effects that truncation error (and the size of h) have on other aspects of the code
- If the code is very long and complex, the overall effects of truncation errors may be unclear
- Still, finite difference methods have had a broad positive impact in computational science!

Automatic Differentiation

- In machine learning, this is often referred to as Back Propagation
- For every (potentially vector valued) function $F\left(c_{\text {input }}\right)$ written into the code, an analytically correct companion function for the Jacobian matrix $\frac{\partial F}{\partial c}\left(c_{\text {input }}\right)$ is also written
- Then when evaluating $F\left(c_{\text {input }}\right)$, one can also evaluate $\frac{\partial F}{\partial c}\left(c_{\text {input }}\right)$
- Of course, $\frac{\partial F}{\partial c}\left(c_{\text {input }}\right)$ contains roundoff errors based on machine precision (and conditioning, etc.)
- But it does not contain the much larger truncation errors present in finite differencing
- Code can be considered in chunks, which combine together various functions via arithmetic/compositional rules
- Analytic differentiation has its own set of rules (linearity, product rule, quotient rule, chain rule, etc.) that can be used to assemble the derivative (evaluated at $c_{\text {input }}$) for the code chunk
- Roundoff errors will accumulate, of course, and the resulting error has the potential to be catastrophic (this is typically even worse for the much larger truncation errors)

Second Derivatives

- If $c_{\text {input }}$ is size n and $F\left(c_{\text {input }}\right)$ is size m, the Jacobian matrix $\frac{\partial F}{\partial c}\left(c_{\text {input }}\right)$ is size $m x n$
- The Hessian of second derivatives is size mxnxn
- Recall: $m=1$ for optimization, i.e. for $\hat{f}\left(c_{i n p u t}\right)$
- Writing automatic differentiation functions for all possible second derivatives can be difficult/tedious
- Storing Hessians for all second derivatives can be unwieldy/intractable
- Roundoff error accumulation can be an even bigger problem for second derivatives, and the resulting errors are typically even more likely to lead to adverse effects
- Additional smoothness is required for second derivatives
- Some of these issues are problems for any method that considers second derivatives (not specific to an automatic differentiation approach)

Dropout

- One idea for combating overfitting is to train several different network architectures on the same data, inference them all, and average the result (model averaging)
- This can be costly, especially if there are many networks
- Dropout is a "hacky" approach to achieving a function averaged over multiple network architectures (though Google did patent it*)
- The idea is to simply ignore parts of the code with some probability when training the network, mimicking a perturbed network architecture
- Although this can be seen as computing correct derivatives on perturbed functions/architectures, it can also equivalently be seen as adding uncertainty to the derivative computation
- That is, instead of regularization via model averaging, it can be seen as creating a network robust to errors in the derivatives

Function Layers

- Many complex processes work in a pipeline with many function layers
- Each layer completes a tasks on its inputs X_{j} to create outputs X_{j+1}
- Each layer may depend on parameters C_{j}
- There may be a known/desired output $X_{\text {target }}$ to compare the final result to

$$
\hat{f}\left(X_{4}\right)=\left\|X_{4}-X_{\text {target }}\right\|
$$

Function Layers (an example)

LAYER 1

- Input: animation controls
- Function: linear blend shapes, nonlinear skinning, quasistatic physics simulation, etc. to deform a face
- Parameters: lots of hand tuned or known parameters including shape libraries, etc.
- Output: 3D vertex positions of a triangle mesh

Function Layers (an example)

LAYER 2

- Input: 3D vertex positions of a triangle mesh
- Function: scanline renderer or ray tracer
- Parameters: lots of hand tuned or known parameters for material models, lighting and shading, textures, etc.
- Output: RGB colors for pixels (a 2D image)

Function Layers (an example)

LAYER 3

- Input: RGB colors for pixels (a 2D image)
- Function: (neural) facial landmark detector
- Parameters: parameters for the neural network architecture, determined by training the network to match hand labeled data
- Output: 2D locations of landmarks on the image

Function Layers (an example)

TARGET

- Run a landmark detector on a photograph of the individual to obtain 2D landmark locations (alternatively, can label by hand)
- The goal is to have the 2D landmarks output from the complex multi-layered function (on the prior three slides) match the 2D landmarks on the photograph

Function Layers (Example)

- Modifying animation controls changes the triangulated surface which changes the rendered pixels in the 2D image which changes the network's determination of the landmarks locations
- When the two sets of landmarks agree, the animation controls give some indication of what the person in the photograph was doing

Classical Optimization

- Find the input X_{1} that minimizes $\hat{f}\left(X_{4}\right)$
- Chain rule: $\frac{\partial \hat{f}\left(X_{4}\right)}{\partial X_{1}}=\frac{\partial \hat{f}\left(X_{4}\right)}{\partial X_{4}} \frac{\partial X_{4}}{\partial X_{3}} \frac{\partial X_{3}}{\partial X_{2}} \frac{\partial X_{2}}{\partial X_{1}}=\frac{\partial \hat{f}\left(X_{4}\right)}{\partial X_{4}} \frac{\partial f_{3}\left(X_{3}, C_{3}\right)}{\partial X_{3}} \frac{\partial f_{2}\left(X_{2}, C_{2}\right)}{\partial X_{2}} \frac{\partial f_{1}\left(X_{1}, C_{1}\right)}{\partial X_{1}}$
- Parameters are considered fixed/constant

$$
\hat{f}\left(X_{4}\right)=\left\|X_{4}-X_{\text {target }}\right\|
$$

Network Training

- Train network f_{2} by finding parameters C_{2} that minimize $\hat{f}\left(X_{4}\right)$
- Chain rule: $\frac{\partial \hat{f}\left(X_{4}\right)}{\partial C_{2}}=\frac{\partial \hat{f}\left(X_{4}\right)}{\partial X_{4}} \frac{\partial X_{4}}{\partial X_{3}} \frac{\partial X_{3}}{\partial c_{2}}=\frac{\partial \hat{f}\left(X_{4}\right)}{\partial X_{4}} \frac{\partial f_{3}\left(X_{3}, C_{3}\right)}{\partial X_{3}} \frac{\partial f_{2}\left(X_{2}, C_{2}\right)}{\partial C_{2}}$

$$
\hat{f}\left(X_{4}\right)=\left\|X_{4}-X_{\text {target }}\right\|
$$

Network Training

- Any preprocess to the network does not require differentiability
- The network itself only requires differentiability with respect to its parameters
- Any postprocess to the network requires input/output differentiability, but does not require differentiability with respect to its parameters

