
Computing Derivatives



Part II Roadmap

• Part I – Linear Algebra (units 1-12) 𝐴𝑐 = 𝑏

• Part II – Optimization (units 13-20)
• (units 13-16) Optimization -> Nonlinear Equations -> 1D roots/minima
• (units 17-18) Computing/Avoiding Derivatives
• (unit 19) Hack 1.0: “I give up” 𝐻 = 𝐼 and 𝐽 is mostly 0 (descent methods)
• (unit 20) Hack 2.0: ”It’s an ODE!?” (adaptive learning rate and momentum)

linearize
line search

Theory

Methods



Smoothness

• Discontinuous functions cannot be differentiated
• Even methods that don’t require derivatives struggle when functions are discontinuous

• Continuous functions may have kinks (discontinuities in derivatives)
• Discontinuous derivatives can cause methods that depend on derivatives to fail, since 

function behavior cannot be adequately predicted from one side of the kink to the other

• Typically, functions need to be “smooth enough”, which has varying meaning 
depending on the approach
• Specialty approaches exist for special classes of functions, e.g. linear algebra, 

linear programming, convex optimization, second order cone program (SOCP), 
etc.
• Nonlinear Systems/Optimization are more difficult, and best practices/techniques often do 

not exist



Biological Neurons (towards “real” AI)

• The aim is to mimic biological (typically human) neural networks and learning
• Biological neurons are “all or none”, which motivates similar strategies in artificial 

neural networks
• This leads to a discontinuous function, with an identically zero derivative everywhere else  
• Disastrous for optimization!

• Biological neurons fire with increased frequency  for stronger signals
• This leads to a piecewise constant and discontinuous derivative 
• Problematic for optimization!

• Smoothing allows optimization to “work”, i.e. allows one to minimize the loss to 
find the parameters/coefficients for the network architecture



Heaviside Function
• 𝐻 𝑥 = 1 for 𝑥 ≥ 0, and 𝐻 𝑥 = 0 for 𝑥 < 0
• Motivated by biological neurons being “all or none”
• Has a discontinuity at 0 and an identically zero derivative everywhere else



Sigmoid Function

• Any smoothed Heaviside function, e.g.	𝑆 𝑥 = !
!"#!"

 (there are many options)

• Continuous and monotonically increasing, although the derivative is close to zero 
further away from 𝑥 = 0



Rectifier Functions

• 𝑅 𝑥 = max 𝑥, 0  or similar functions which are continuous and have increasing values
• Motivated by biological neurons firing with increased frequency for stronger signals
• Piecewise constant and discontinuous derivative causes issues with optimization 



Softplus Function

• Softplus function 𝑆𝑃 𝑥 = log 1 + 𝑒$  smooths the discontinuous derivative 
typical of rectifier functions



Leaky Rectifier Function

• Modifies the negative part of a rectifier function to also have a positive slope 
instead of being set to zero
• Can be smoothed (as well)



Arg/Soft Max

• Arg Max returns 1 for the largest argument and 0 for the other arguments
• E.g. .99,1 → (0,1), 1, . 99 → 1,0 , etc.
• Highly discontinuous!

• Soft Max is a smoothed version, e.g. 𝑥!, 𝑥% → #"#

#"#"#"$
, #"$

#"#"#"$

• This is a smooth function of the arguments, differentiable, etc.
• Variants/weightings exist to make it closer/further from Arg Max (while 

preserving differentiability)



Binary Classification

• Training data (𝑥& , 𝑦&) where the 𝑦& = ±1 are binary class labels

• Find plane ;𝑛' 𝑥 − 𝑥( = 0 that separates the data between the two class labels 
( ;𝑛 is the unit normal and 𝑥( is a point on the plane)
• The closest 𝑥&  on each side of the plane are called support vectors
• If the separating plane is equidistant between the support vectors, then they lie 

on parallel planes: ;𝑛' 𝑥 − 𝑥( = ±𝜖 (where 𝜖 is the margin)
• Dividing by 𝜖 to normalize gives 𝑐' 𝑥 − 𝑥( = ±1 where 𝑐 points in the normal 

direction (but is not unit length); then, maximizing the margin 𝜖 is equivalent to 
minimizing 𝑐 %



Binary Classification

• Minimize ?𝑓 𝑐 = !
%
𝑐'𝑐  subject to inequality constraints:

• 𝑐! 𝑥" − 𝑥# ≥ 1 when 𝑦" = 1, and 𝑐! 𝑥" − 𝑥# ≤ −1 when 𝑦" = −1 
• Can combine these into 𝑦"𝑐! 𝑥" − 𝑥# ≥ 1 for every data point
• Alternatively, 𝑦" 𝑐!𝑥" − 𝑏 ≥ 1 with a scalar unknown 𝑏 = 𝑐!𝑥#

• When approached via unconstrained optimization, Heaviside functions can be 
used to incorporate the constraints into the cost function
• Subsequently smoothing those Heaviside functions is called soft-margin

• Note: new data is classified (via inference) based on the sign of 𝑐'𝑥)#* − 𝑏



(Inequality) Constrained Optimization

• Minimize ?𝑓 𝑐  subject to ;𝑔 𝑐 ≥ 0 (or ;𝑔 𝑐 	> 0)
• Create a penalty term −𝐻 − ;𝑔& 𝑐 ;𝑔& 𝑐 , which is nonzero only when ;𝑔& 𝑐 < 0
• This penalty term is minimized by forcing negative 3𝑔" 𝑐  towards zero (as desired) 

• Given a diagonal matrix 𝐷 of (positive) weights indicating the relative importance 
of various constraints, unconstrained optimization can be used to minimize 
?𝑓 𝑐 − ∑&𝐻 −�̂�&'𝐷 ;𝑔 𝑐 �̂�&'𝐷 ;𝑔 𝑐
• This requires differentiating the non-smooth Heaviside function 
• Smoothing the Heaviside function makes the modified cost function differentiable



Symbolic Differentiation

• When a function is known in closed form, it can be differentiated by hand
• Software packages such as Mathematica can aid in symbolic differentiation (and 

subsequent simplification)
• Some benefits of knowing the closed form derivative:
• Provides a better understanding of the underlying problem
• Enables well thought out smoothing/regularization
• Allows one to implement more efficient code
• Subsequently allows access to higher derivatives
• Some of the aforementioned benefits enable the use of better solvers
• Helps to write/maintain code with less bugs
• Etc.



Example

• Suppose a code has the following functons: 
• 𝑓 𝑡 = 𝑡$ − 4 with 𝑓% 𝑡 = 2𝑡, and 𝑔 𝑡 = 𝑡 − 2 with 𝑔% 𝑡 = 1

• Suppose another part of the code combines these functions:
• ℎ 𝑡 = & '

((') with ℎ′ 𝑡 = ( ' &! ' +& ' (!(')
( ' "

• Then ℎ 2 = + %
,(%)

= /
/
 and ℎ0(2) = , % +% % 1+ % ,% %

, %
$ = /⋅31/⋅!

/$

• Adding a small 𝜖 > 0 to the denominators (to avoid division by zero) gives ℎ 2 = 0 and 
ℎ% 2 = 0
• Adding a small 𝜖 > 0 to denominators is often done whenever the denominators are small, 

making ℎ 𝑡 ≈ 0 and ℎ% 𝑡 ≈ 0 for 𝑡 ≈ 2 as well
• Of course, ℎ 𝑡 = 𝑡 + 2 is a straight line with ℎ 2 = 4 and ℎ0 𝑡 = 1 

everywhere



Symbolic Differentiation of Code

• Sometimes a function is not analytically known and/or merely represents the 
output of some source code
• But, parts of the code may have known derivatives, and those known derivatives 

can be utilized/leveraged via the mathematical rules for differentiation
• Moreover, when parts of the code are always used consecutively, they can be 

merged; subsequently, merged code with known derivatives in each part can 
often have the derivative treatment simplified for accuracy/robustness/efficiency



Differentiate the Right Thing

• Consider an iterative solver (e.g. CG, Minres, etc.) that solves 𝐴𝑐 = 𝑏 to find 𝑐 given 𝑏
• Sometimes the code is enormous, complicated, confusing, a black box, etc. (basically 

impenetrable) 
• It is tempting to consider some of the code bases that claim to differentiate such chunks 

of code
• Sometimes these approaches work, and the answers are reasonable
• But, it is often difficult to know whether or not computational inaccuracies (as discussed in this 

class) are having an adverse effect on such a black box approach

• Alternatively, when invertible: 𝑐 = 𝐴!"𝑏 and  #$!
#%"

= %𝑎&' where %𝑎&' is an entry in 𝐴!"
• A similar approach can be taken for 𝐴#, which can be estimated robustly via PCA, the Power 

Method, etc.
• The derivative is independent of the iterative solver (CG, Minres, etc.) and the errors 

that might accumulate within the iterative solver due to poor conditioning
• More recently, this sort of approach is being referred to as an implicit layer



The Used Car Salesman

• Beware of the claim: it is good to be able to use something without 
understanding it
• The claim is often true, and many of us enjoy driving our cars without 

understanding much of what is under the hood
• However, those who design cars, manufacture cars, repair cars, etc. benefit 

greatly from understanding as much as possible about them (and the rest of us 
benefit enormously from their expertise)
• Though, admittedly, there are those in the car business, such as those who sell 

used cars, who legitimately don’t require any real knowledge/expertise
• The question is: what kind of computer scientist do you want to be?



Oversimplified Thinking

• Beware of claims that drastically oversimplify 

• E.g., some say that code is very simple and merely consists of simple operations 
like add/subtract/multiply/divide that are easily differentiated
• However, in reality, even the simple 𝑧 = 𝑥 + 𝑦 has subtleties that can matter
• E.g. the computer actually executes 𝑧 = 𝑟𝑜𝑢𝑛𝑑(𝑥 + 𝑦)

• Too many claim that issues they have not carefully considered don’t matter in 
practice; meanwhile, many state-of-the-art practices in ML/DL are not well 
understood in the first place (leaving one to question these sorts of claims)



Finite Differences

• Derivatives can be approximated by various formulas, similar to how the Secant 
method was derived from Newton’s method
• Given a small perturbation ℎ > 0, Taylor expansions can be manipulated to write:

• Forward Difference:  𝑔′ 𝑡 = , 4"5 1,(4)
5

+ 𝑂(ℎ), 1st order accurate

• Backward Difference:  𝑔′ 𝑡 = , 4 1,(415)
5

+ 𝑂(ℎ), 1st order accurate

• Central Difference: 𝑔′ 𝑡 = , 4"5 1,(415)
%5

+ 𝑂(ℎ%), 2nd order accurate

• Second Derivative:  𝑔′′ 𝑡 = , 4"5 1%, 4 ",(415)
5$

+ 𝑂(ℎ%), 2nd order accurate

• These approximations can be evaluated even when 𝑔 𝑡  is not known precisely, 
but merely represents the output of some code with input 𝑡



Finite Differences (Drawbacks)

• Finite Differences only give an approximation to the derivative, and contain 
truncation errors related to the perturbation size ℎ
• One has to reason about the effects that truncation error (and the size of ℎ) have 

on other aspects of the code
• If the code is very long and complex, the overall effects of truncation errors may 

be unclear

• Still, finite difference methods have had a broad positive impact in computational 
science!



Automatic Differentiation

• In machine learning, this is often referred to as Back Propagation

• For every (potentially vector valued) function 𝐹 𝑐",-.'  written into the code, an analytically 
correct companion function for the Jacobian matrix  /0

/1
(𝑐",-.') is also written

• Then when evaluating 𝐹 𝑐",-.' , one can also evaluate  /0
/1

𝑐",-.'
• Of course, !"

!#
𝑐$%&'(  contains roundoff errors based on machine precision (and conditioning, etc.) 

• But it does not contain the much larger truncation errors present in finite differencing

• Code can be considered in chunks, which combine together various functions via 
arithmetic/compositional rules
• Analytic differentiation has its own set of rules (linearity, product rule, quotient rule, chain rule, etc.) that can 

be used to assemble the derivative (evaluated at 𝑐$%&'() for the code chunk

• Roundoff errors will accumulate, of course, and the resulting error has the potential to be 
catastrophic (this is typically even worse for the much larger truncation errors)



Second Derivatives

• If 𝑐'()*+ is size 𝑛 and 𝐹 𝑐'()*+  is size 𝑚, the Jacobian matrix #,
#$
(𝑐'()*+) is size 𝑚𝑥𝑛

• The Hessian of second derivatives is size 𝑚𝑥𝑛𝑥𝑛
• Recall: 𝑚 = 1 for optimization, i.e. for %𝑓(𝑐'()*+)

• Writing automatic differentiation functions for all possible second derivatives can be 
difficult/tedious
• Storing Hessians for all second derivatives can be unwieldy/intractable
• Roundoff error accumulation can be an even bigger problem for second derivatives, and 

the resulting errors are typically even more likely to lead to adverse effects
• Additional smoothness is required for second derivatives
• Some of these issues are problems for any method that considers second derivatives 

(not specific to an automatic differentiation approach)



Dropout

• One idea for combating overfitting is to train several different network architectures on 
the same data, inference them all, and average the result (model averaging)
• This can be costly, especially if there are many networks

• Dropout is a “hacky” approach to achieving a function averaged over multiple network 
architectures (though Google did patent it*)
• The idea is to simply ignore parts of the code with some probability when training the 

network, mimicking a perturbed network architecture
• Although this can be seen as computing correct derivatives on perturbed 

functions/architectures, it can also equivalently be seen as adding uncertainty to the 
derivative computation
• That is, instead of regularization via model averaging, it can be seen as creating a 

network robust to errors in the derivatives *Bard did so poorly, they renamed it Gemini; 
how is Gemini doing?



Function Layers

• Many complex processes work in a pipeline with many function layers
• Each layer completes a tasks on its inputs 𝑋7  to create outputs 𝑋7"! 
• Each layer may depend on parameters 𝐶7
• There may be a known/desired output 𝑋489,#4  to compare the final result to

𝑋!

𝐶!

𝑓!(𝑋!; 𝐶!) 𝑓%(𝑋%; 𝐶%) 𝑓:(𝑋:; 𝐶:)

𝐶% 𝐶:

𝑋% 𝑋: 𝑋3

?𝑓 𝑋3 = 𝑋3 − 𝑋489,#4

in in inout out out

params params params



Function Layers (an example)

LAYER 1
• Input: animation controls
• Function: linear blend shapes, nonlinear skinning, 

quasistatic physics simulation, etc. to deform a face 
• Parameters: lots of hand tuned or known 

parameters including shape libraries, etc.
• Output: 3D vertex positions of a triangle mesh 



Function Layers (an example)

LAYER 2
• Input: 3D vertex positions of a triangle mesh 
• Function: scanline renderer or ray tracer
• Parameters: lots of hand tuned or known 

parameters for material models, lighting and 
shading, textures, etc.
• Output: RGB colors for pixels (a 2D image)



Function Layers (an example)

LAYER 3
• Input: RGB colors for pixels (a 2D image)
• Function: (neural) facial landmark detector 
• Parameters: parameters for the neural network 

architecture, determined by training the network 
to match hand labeled data
• Output: 2D locations of landmarks on the image



Function Layers (an example)

TARGET
• Run a landmark detector on a photograph of the 

individual to obtain 2D landmark locations 
(alternatively, can label by hand)
• The goal is to have the 2D landmarks output from 

the complex multi-layered function (on the prior 
three slides) match the 2D landmarks on the 
photograph



Function Layers (Example)
• Modifying animation controls changes the triangulated surface which changes the 

rendered pixels in the 2D image which changes the network’s determination of the 
landmarks locations
• When the two sets of landmarks agree, the animation controls give some indication of 

what the person in the photograph was doing



Classical Optimization

• Find the input 𝑋!	that minimizes ?𝑓 𝑋3
• Chain rule: ;

<+ =&
;=#

= ; <+ =&
;=&

;=&
;='

;='
;=$

;=$
;=#

= ; <+ =&
;=&

;+'(=',?')
;='

;+$(=$,?$)
;=$

;+#(=#,?#)
;=#

• Parameters are considered fixed/constant

𝑋!

𝐶!

𝑓!(𝑋!; 𝐶! ) 𝑓%(𝑋%; 𝐶%) 𝑓:(𝑋:; 𝐶:)

𝐶% 𝐶:

𝑋% 𝑋: 𝑋3

?𝑓 𝑋3 = 𝑋3 − 𝑋489,#4

in in inout out out

params params params



Network Training

• Train network 𝑓% by finding parameters 𝐶%	that minimize ?𝑓 𝑋3
• Chain rule: ;

<+ =&
;?$

= ; <+ =&
;=&

;=&
;='

;='
;?$

= ; <+ =&
;=&

;+'(=',?')
;='

;+$(=$,?$)
;?$

𝑋!

𝐶!

𝑓!(𝑋!; 𝐶!) 𝑓%(𝑋%; 𝐶%) 𝑓:(𝑋:; 𝐶:)

𝐶% 𝐶:

𝑋% 𝑋: 𝑋3

?𝑓 𝑋3 = 𝑋3 − 𝑋489,#4

in in inout out out

params params params



Network Training

• Any preprocess to the network does not require differentiability
• The network itself only requires differentiability with respect to its parameters
• Any postprocess to the network requires input/output differentiability, but does 

not require differentiability with respect to its parameters

𝑋!

𝐶!

𝑓!(𝑋!, 𝐶!) 𝑓%(𝑋%, 𝐶%) 𝑓:(𝑋:, 𝐶:)

𝐶% 𝐶:

𝑋% 𝑋: 𝑋3

?𝑓 𝑋3 = 𝑋3 − 𝑋489,#4

in in inout out out

params params params


