Avoiding Derivatives

Part II Roadmap

- Part I - Linear Algebra (units 1-12) $A c=b$
- Part II - Optimization (units 13-20)

- (units 13-16) Optimization -> Nonlinear Equations -> 1D roots/minima

Theory

- (units 17-18) Computing/Avoiding Derivatives
- (unit 19) Hack 1.0: "I give up" $H=I$ and J is mostly 0 (descent methods)

Methods

- (unit 20) Hack 2.0: "It's an ODE!?" (adaptive learning rate and momentum)

1D Root Finding (see Unit 15)

- Newton's method requires g^{\prime}, as do mixed methods using Newton
- Secant method replaces g^{\prime} with a secant line though two prior iterates
- Finite differencing (unit 17) may be used to approximate this derivative as well, although one needs to determine the size of the perturbation h
- Automatic differentiation (unit 17) may be used to find the value of g^{\prime} at a particular point, if/when "backprop" code exists, even when g and g^{\prime} are not known in closed form
- Convergence is only guaranteed under certain conditions, emphasizing the importance of safe set methods (such as mixed methods with bisection)
- Safe set methods (such as mixed methods with bisection) also help to guard against errors in derivative approximations

1D Optimization (see Unit 16)

- Root finding approaches search for critical points as the roots of g^{\prime}
- All root finding methods use the function itself (g^{\prime} here)
- Newton (and mixed methods using Newton) require the derivative of the function ($g^{\prime \prime}$ here)
- Can use secant lines for g^{\prime} and interpolating parabolas for $g^{\prime \prime}$, using either prior iterates (unit 16) or finite differences (unit 17)
- Automatic differentiation (unit 17) may be leveraged as well
- Although, not (typically) for approaches that require $g^{\prime \prime}$
- Safe set methods (such as mixed methods with bisection or golden section search) help to guard against errors in the approximation of various derivatives

Nonlinear Systems (see Unit 14)

- $J_{F}\left(c^{q}\right) \Delta c^{q}=(\beta-1) F\left(c^{q}\right)$ is solved to find the search direction Δc^{q}
- Then, line search utilizes various 1D approaches (unit 15/16)
- The Jacobian matrix of first derivatives $J_{F}\left(c^{q}\right)$ needs to be evaluated (given c^{q})
- Each entry $\frac{\partial F_{i}}{\partial c_{k}}\left(c^{q}\right)$ can be approximated via finite differences (unit 17) or automatic differentiation (unit 17)
- Making various approximations to the Jacobian $J_{F}\left(c^{q}\right)$ perturbs the search direction, so robust/safe set approaches to the 1D line search are important for making "progress" towards solutions

Quasi-Newton Methods

- $J_{F}\left(c^{q}\right) \Delta c^{q}=(\beta-1) F\left(c^{q}\right)$ is solved to find the search direction Δc^{q}
- The Jacobian matrix of first derivatives $J_{F}\left(c^{q}\right)$ needs to be evaluated (given c^{q})
- Quasi-Newton approaches make various aggressive approximations to the Jacobian $J_{F}\left(c^{q}\right)$
- Quasi-Newton can wildly perturb the search direction
- So, robust/safe set approaches to the 1D line search become quite important for making "progress" towards solutions

Broyden's Method

- An initial guess for the Jacobian is repeatedly corrected with rank one updates, similar in spirit to a secant approach
- Let $J^{0}=I$
- Solve $J^{q} \Delta c^{q}=-F\left(c^{q}\right)$ to find search direction Δc^{q}
overwrite Δc^{q}
- Use 1D line search to find c^{q+1} and thus $F\left(c^{q+1}\right)$; then, update $\Delta c^{q}=c^{q+1}$
- Update $J^{q+1}=J^{q}+\frac{1}{\left(\Delta c^{q}\right)^{T} \Delta c^{q}}\left(F\left(c^{q+1}\right)-F\left(c^{q}\right)-J^{q} \Delta c^{q}\right)\left(\Delta c^{q}\right)^{T}$
- Note: $J^{q+1}\left(\mathrm{c}^{q+1}-c^{q}\right)=F\left(c^{q+1}\right)-F\left(c^{q}\right)$
- That is, J^{q+1} satisfies a secant type equation $J \Delta c=\Delta F$

Optimization (see Unit 13)

- Scalar cost function $\hat{f}(c)$ has critical points where $J_{\hat{f}}^{T}(c)=0$ (unit 13)
- $H_{\hat{f}}^{T}\left(c^{q}\right) \Delta c^{q}=(\beta-1) J_{\hat{f}}^{T}\left(c^{q}\right)$ is solved to find a search direction Δc^{q} (unit 14)
- Then, line search utilizes various 1D approaches (unit 15/16)
- The Hessian matrix of second derivatives $H_{\hat{f}}^{T}\left(c^{q}\right)$ and the Jacobian vector of first derivatives $J_{\hat{f}}^{T}\left(c^{q}\right)$ both need to be evaluated (given c^{q})
- The various entries can be evaluated via finite differences (unit 17) or automatic differentiation (unit 17)
- These approaches can struggle on the Hessian matrix of second partial derivatives

Quasi-Newton Methods (for optimization)

- $H_{\hat{f}}^{T}\left(c^{q}\right) \Delta c^{q}=(\beta-1) J_{\hat{f}}^{T}\left(c^{q}\right)$ is solved to find a search direction Δc^{q}
- The Hessian matrix of second derivatives $H_{\hat{f}}^{T}\left(c^{q}\right)$ and the Jacobian vector of first derivatives $J_{\hat{f}}^{T}\left(c^{q}\right)$ both need to be evaluated (given c^{q})
- Second derivatives pose even more issues than first derivatives
- This makes Quasi-Newton approaches quite popular for optimization
- When c is large, the $O\left(n^{2}\right)$ Hessian $H_{\hat{f}}^{T}$ is unwieldy/intractable, so some approaches instead approximate the action of $H_{\hat{f}}^{-T}$ on a vector
- i.e. the action of $H_{\hat{f}}^{-T}$ on the right hand side

Broyden's Method (for Optimization)

- Same formulation as for nonlinear systems (3 slides prior)
- Solve for the search direction, and use 1D line search to find c^{q+1} and $J_{\hat{f}}^{T}\left(c^{q+1}\right)$
- Overwrite $\Delta c^{q}=c^{q+1}-c^{q}$ and compute $\Delta J_{\hat{f}}^{T}=J_{\hat{f}}^{T}\left(c^{q+1}\right)-J_{\hat{f}}^{T}\left(c^{q}\right)$
- Update $\left(H_{\hat{f}}^{T}\right)^{q+1}=\left(H_{\hat{f}}^{T}\right)^{q}+\frac{1}{\left(\Delta c^{q}\right)^{T} \Delta c^{q}}\left(\Delta J_{\hat{f}}^{T}-\left(H_{\hat{f}}^{T}\right)^{q} \Delta c^{q}\right)\left(\Delta c^{q}\right)^{T}$
- So that $\left(H_{\hat{f}}^{T}\right)^{q+1} \Delta c^{q}=\Delta J_{\hat{f}}^{T}$ is satisfied (a secant type equation)

Broyden's Method (for Optimization)

- For the inverse, using $\Delta c^{q}=c^{q+1}-c^{q}$ and $\Delta J_{\hat{f}}^{T}=J_{\hat{f}}^{T}\left(c^{q+1}\right)-J_{\hat{f}}^{T}\left(c^{q}\right)$
- Update $\left(H_{\hat{f}}^{-T}\right)^{q+1}=\left(H_{\hat{f}}^{-T}\right)^{q}+\frac{\left(\Delta c^{q}-\left(H_{f}^{-T}\right)^{q} \Delta J_{f}^{T}\right)\left(\Delta c^{q}\right)^{T}\left(H_{\hat{f}}^{-T}\right)^{q}}{\left(\Delta c^{q}\right)^{T}\left(H_{\hat{f}}^{-T}\right)^{q} \Delta J_{f}^{T}}$
- So that $\left(H_{\hat{f}}^{-T}\right)^{q+1} \Delta J_{\hat{f}}^{T}=\Delta c^{q}$
- Solving $H_{\hat{f}}^{T}\left(c^{q+1}\right) \Delta c^{q+1}=-J_{\hat{f}}^{T}\left(c^{q+1}\right)$ is replaced with defining the search direction by $\Delta c^{q+1}=-\left(H_{\hat{f}}^{-T}\right)^{q+1} J_{\hat{f}}^{T}\left(c^{q+1}\right)$

SR1 (Symmetric Rank 1)

- For the inverse, using $\Delta c^{q}=c^{q+1}-c^{q}$ and $\Delta J_{\hat{f}}^{T}=J_{\hat{f}}^{T}\left(c^{q+1}\right)-J_{\hat{f}}^{T}\left(c^{q}\right)$
- Update $\left(H_{\hat{f}}^{-T}\right)^{q+1}=\left(H_{\hat{f}}^{-T}\right)^{q}+\frac{\left(\Delta c^{q}-\left(H_{\hat{f}}^{-T}\right)^{q} \Delta J_{\tilde{f}}^{T}\right)\left(\Delta c^{q}-\left(H_{\hat{f}}^{-T}\right)^{q} \Delta J_{\tilde{f}}^{T}\right)^{T}}{\left(\Delta c^{q}-\left(H_{\hat{f}}^{-T}\right)^{q} \Delta J_{\hat{f}}^{T}\right)^{T} \Delta J_{\hat{f}}^{T}}$
- So that $\left(H_{\hat{f}}^{-T}\right)^{q+1} \Delta J_{\hat{f}}^{T}=\Delta c^{q}$
- Solving $H_{\hat{f}}^{T}\left(c^{q+1}\right) \Delta c^{q+1}=-J_{\hat{f}}^{T}\left(c^{q+1}\right)$ is replaced with defining the search direction by $\Delta c^{q+1}=-\left(H_{\hat{f}}^{-T}\right)^{q+1} J_{\hat{f}}^{T}\left(c^{q+1}\right)$

DFP (Davidon-Fletcher-Powell)

- For the inverse, using $\Delta c^{q}=c^{q+1}-c^{q}$ and $\Delta J_{\hat{f}}^{T}=J_{\hat{f}}^{T}\left(c^{q+1}\right)-J_{\hat{f}}^{T}\left(c^{q}\right)$
- Update $\left(H_{\hat{f}}^{-T}\right)^{q+1}=\left(H_{\hat{f}}^{-T}\right)^{q}-\frac{\left(H_{\hat{f}}^{-T}\right)^{q} \Delta J_{\hat{f}}^{T} \Delta J_{\hat{f}}\left(H_{\hat{f}}^{-T}\right)^{q}}{\Delta J_{\hat{f}}\left(H_{\hat{f}}^{-T}\right)^{q} \Delta J_{\hat{f}}^{T}}+\frac{\Delta c^{q}\left(\Delta c^{q}\right)^{T}}{\left(\Delta c^{q}\right)^{T} \Delta J_{\hat{f}}^{T}}$
- So that $\left(H_{\hat{f}}^{-T}\right)^{q+1} \Delta J_{\hat{f}}^{T}=\Delta c^{q}$
- Solving $H_{\hat{f}}^{T}\left(c^{q+1}\right) \Delta c^{q+1}=-J_{\hat{f}}^{T}\left(c^{q+1}\right)$ is replaced with defining the search direction by $\Delta c^{q+1}=-\left(H_{\hat{f}}^{-T}\right)^{q+1} J_{\hat{f}}^{T}\left(c^{q+1}\right)$

BFGS (Broyden-Fletcher-Goldfarb-Shanno)

- For the inverse, using $\Delta c^{q}=c^{q+1}-c^{q}$ and $\Delta J_{\hat{f}}^{T}=J_{\hat{f}}^{T}\left(c^{q+1}\right)-J_{\hat{f}}^{T}\left(c^{q}\right)$
- Update $\left(H_{\hat{f}}^{-T}\right)^{q+1}=\left(I-\frac{\Delta c^{q} \Delta J_{\hat{f}}}{\left(\Delta c^{q}\right)^{T} \Delta J_{\hat{f}}^{T}}\right)\left(H_{\hat{f}}^{-T}\right)^{q}\left(I-\frac{\Delta J_{\hat{f}}^{T}\left(\Delta c^{q}\right)^{T}}{\left(\Delta c^{q}\right)^{T} \Delta J_{\hat{f}}^{T}}\right)+\frac{\Delta c^{q}\left(\Delta c^{q}\right)^{T}}{\left(\Delta c^{q}\right)^{T} \Delta J_{\hat{f}}^{T}}$
- So that $\left(H_{\hat{f}}^{-T}\right)^{q+1} \Delta J_{\hat{f}}^{T}=\Delta c^{q}$
- Solving $H_{\hat{f}}^{T}\left(c^{q+1}\right) \Delta c^{q+1}=-J_{\hat{f}}^{T}\left(c^{q+1}\right)$ is replaced with defining the search direction by $\Delta c^{q+1}=-\left(H_{\hat{f}}^{-T}\right)^{q+1} J_{\hat{f}}^{T}\left(c^{q+1}\right)$

L-BFGS (Limited Memory BFGS)

- Storing an $n x n$ approximation to the inverse Hessian can become unwieldy for large problems
- More efficient to instead store the vectors that describe the outer products; however, the number of vectors grows with q
- L-BFGS estimates the inverse Hessian using only a few of the prior vectors
- often less than 10 vectors (vectors, vector spaces, not matrices)
- This makes it quite popular for machine learning

On optimization methods for deep learning, Andrew Ng et al., ICML 2011

- "we show that more sophisticated off-the-shelf optimization methods such as Limited memory BFGS (L-BFGS) and Conjugate gradient (CG) with line search can significantly simplify and speed up the process of pretraining deep algorithms"

Gradient/Steepest Descent

- Approximate $H_{\hat{f}}^{T}$ very crudely with the identity matrix
- which is the first step of all the aforementioned methods
- That is, $H_{\hat{f}}^{T}\left(c^{q}\right) \Delta c^{q}=-J_{\hat{f}}^{T}\left(c^{q}\right)$ becomes $I \Delta c^{q}=-J_{\hat{f}}^{T}\left(c^{q}\right)$
- So, the search direction is $\Delta c^{q}=-J_{\hat{f}}^{T}\left(c^{q}\right)=-\nabla \hat{f}\left(c^{q}\right)$
- This is the steepest descent direction
- See unit 19

Coordinate Descent

- Coordinate Descent ignores $H_{\hat{f}}^{T}\left(c^{q}\right) \Delta c^{q}=-J_{\hat{f}}^{T}\left(c^{q}\right)$ completely
- Instead, Δc^{q} is set to the various coordinate directions \hat{e}_{k}

Nonlinear Least Squares

- Recall from Unit 13:
- Determine parameters c that make $f(x, y, c)=0$ best fit the training data, i.e. that make $\left\|f\left(x_{i}, y_{i}, c\right)\right\|_{2}^{2}=f\left(x_{i}, y_{i}, c\right)^{T} f\left(x_{i}, y_{i}, c\right)$ close to zero for all i
- Combining all $\left(x_{i}, y_{i}\right)$, minimize $\hat{f}(c)=\frac{1}{2} \sum_{i} f\left(x_{i}, y_{i}, c\right)^{T} f\left(x_{i}, y_{i}, c\right)$
- Let m be the number of data points and \widehat{m} be the output size of $f(x, y, c)$
- Define $\tilde{f}(c)$ by stacking the \widehat{m} outputs of $f(x, y, c)$ consecutively m times, so that the vector valued output of $\tilde{f}(c)$ is length $m * \widehat{m}$
- Then, $\hat{f}(c)=\frac{1}{2} \sum_{i} f\left(x_{i}, y_{i}, c\right)^{T} f\left(x_{i}, y_{i}, c\right)=\frac{1}{2} \tilde{f}^{T}(c) \tilde{f}(c)$

Nonlinear Least Squares

- Minimize $\hat{f}(c)=\frac{1}{2} \tilde{f}^{T}(c) \tilde{f}(c)$
- Jacobian matrix of \tilde{f} is $J_{\tilde{f}}(c)=\left(\begin{array}{llll}\frac{\partial \tilde{f}}{\partial c_{1}}(c) & \frac{\partial \tilde{f}}{\partial c_{2}}(c) & \cdots & \frac{\partial \tilde{f}}{\partial c_{n}}(c)\end{array}\right)$
- Critical points of $\hat{f}(c)$ have $J_{\hat{f}}^{T}(c)=\left(\begin{array}{c}\tilde{f}^{T}(c) \frac{\partial \tilde{f}}{\partial c_{1}}(c) \\ \tilde{f}^{T}(c) \frac{\partial \tilde{f}}{\partial c_{2}}(c) \\ \vdots \\ \tilde{f}^{T}(c) \frac{\partial \tilde{f}}{\partial c_{n}}(c)\end{array}\right)=J_{\tilde{f}}^{T}(c) \tilde{f}(c)=0$

Gauss Newton

- $J_{\tilde{f}}^{T}(c) \tilde{f}(c)=0$ becomes $J_{\tilde{f}}^{T}(c)\left(\tilde{f}\left(c^{q}\right)+J_{\tilde{f}}\left(c^{q}\right) \Delta c^{q}+\cdots\right)=0$
- Using the Taylor series: $\tilde{f}(c)=\tilde{f}\left(c^{q}\right)+J_{\tilde{f}}\left(c^{q}\right) \Delta c^{q}+\cdots$
- Eliminating high order terms: $J_{\tilde{f}}^{T}(c)\left(\tilde{f}\left(c^{q}\right)+J_{\tilde{f}}\left(c^{q}\right) \Delta c^{q}\right) \approx 0$
- Evaluating $J_{\tilde{f}}^{T}$ at c^{q} gives $J_{\tilde{f}}^{T}\left(c^{q}\right) J_{\tilde{f}}\left(c^{q}\right) \Delta c^{q} \approx-J_{\tilde{f}}^{T}\left(c^{q}\right) \tilde{f}\left(c^{q}\right)$
- Compare to $H_{\hat{f}}^{T}\left(c^{q}\right) \Delta c^{q}=-J_{\tilde{f}}^{T}\left(c^{q}\right)$ and note that $J_{\hat{f}}^{T}(c)=J_{\tilde{f}}^{T}(c) \tilde{f}(c)$
- Thus, Gauss Newton uses the estimate: $H_{\hat{f}}^{T}\left(c^{q}\right) \approx J_{\tilde{f}}^{T}\left(c^{q}\right) J_{\tilde{f}}\left(c^{q}\right)$
- Removes the second derivatives!

Gauss Newton (QR approach)

- Gauss Newton equations $J_{\tilde{f}}^{T}\left(c^{q}\right) J_{\tilde{f}}\left(c^{q}\right) \Delta c^{q}=-J_{\tilde{f}}^{T}\left(c^{q}\right) \tilde{f}\left(c^{q}\right)$ are the normal equations for $J_{\tilde{f}}\left(c^{q}\right) \Delta c^{q}=-\tilde{f}\left(c^{q}\right)$
- So, (instead) solve $J_{\tilde{f}}\left(c^{q}\right) \Delta c^{q}=-\tilde{f}\left(c^{q}\right)$ via any least squares (QR) and minimum norm approach
- Note: setting the second factor in $J_{\tilde{f}}^{T}(c)\left(\tilde{f}\left(c^{q}\right)+J_{\tilde{f}}\left(c^{q}\right) \Delta c^{q}\right) \approx 0$ to zero also leads to $J_{\tilde{f}}\left(c^{q}\right) \Delta c^{q}=-\tilde{f}\left(c^{q}\right)$
- This is a linearization of the nonlinear system $\tilde{f}(c)=0$, aiming to minimize $\hat{f}(c)=\frac{1}{2} \tilde{f}^{T}(c) \tilde{f}(c)$

Weighted Gauss Newton

- Given a diagonal matrix D indicating the importance of various equations:

$$
\begin{aligned}
D J_{\tilde{f}}\left(c^{q}\right) \Delta c^{q} & =-D \tilde{f}\left(c^{q}\right) \\
J_{\tilde{f}}^{T}\left(c^{q}\right) D^{2} J_{\tilde{f}}\left(c^{q}\right) \Delta c^{q} & =-J_{\tilde{f}}^{T}\left(c^{q}\right) D^{2} \tilde{f}\left(c^{q}\right)
\end{aligned}
$$

- Recall: Row scaling changes the importance of the equations
- It also changes the (unique) least squares solution for any overdetermined degrees of freedom

Regularized Gauss Newton

- When concerned about small singular values in $J_{\tilde{f}}\left(c^{q}\right) \Delta c^{q}=-\tilde{f}\left(c^{q}\right)$, one can add $\epsilon I=0$ as extra equations (unit 12 regularization)
- This results in $\left(J_{\tilde{f}}^{T}\left(c^{q}\right) J_{\tilde{f}}\left(c^{q}\right)+\epsilon^{2} I\right) \Delta c^{q}=-J_{\tilde{f}}^{T}\left(c^{q}\right) \tilde{f}\left(c^{q}\right)$
- This is often called Levenberg-Marquardt or Damped (Nonlinear) Least Squares

