Avoiding Derivatives

Part II Roadmap

- Part I Linear Algebra (units 1-12) Ac = b
 - linearize

line search

Theory

Methods

- Part II Optimization (units 13-20)
 - (units 13-16) Optimization -> Nonlinear Equations -> 1D roots/minima
 - (units 17-18) Computing/Avoiding Derivatives
 - (unit 19) Hack 1.0: "I give up" H = I and J is mostly 0 (descent methods)
 - (unit 20) Hack 2.0: "It's an ODE!?" (adaptive learning rate and momentum)

1D Root Finding (see Unit 15)

- Newton's method requires g', as do mixed methods using Newton
- Secant method replaces g' with a secant line though two prior iterates
- <u>Finite differencing</u> (unit 17) may be used to approximate this derivative as well, although one needs to determine the size of the perturbation h
- <u>Automatic differentiation</u> (unit 17) may be used to find the value of g' at a particular point, if/when "backprop" code exists, even when g and g' are not known in closed form
- Convergence is only guaranteed under certain conditions, emphasizing the importance of safe set methods (such as mixed methods with bisection)
- Safe set methods (such as mixed methods with bisection) also help to guard against errors in derivative approximations

1D Optimization (see Unit 16)

• Root finding approaches search for critical points as the roots of g'

- All root finding methods use the function itself (g' here)
- Newton (and mixed methods using Newton) require the derivative of the function ($g^{\prime\prime}$ here)
- Can use <u>secant</u> lines for g' and <u>interpolating parabolas</u> for g'', using either prior iterates (unit 16) or finite differences (unit 17)
- Automatic differentiation (unit 17) may be leveraged as well
 - Although, not (typically) for approaches that require $g^{\prime\prime}$
- Safe set methods (such as mixed methods with bisection or golden section search) help to guard against errors in the approximation of various derivatives

Nonlinear Systems (see Unit 14)

- J_F(c^q)Δc^q = (β 1)F(c^q) is solved to find the search direction Δc^q
 Then, line search utilizes various 1D approaches (unit 15/16)
- The Jacobian matrix of first derivatives $J_F(c^q)$ needs to be evaluated (given c^q)
- Each entry $\frac{\partial F_i}{\partial c_k}(c^q)$ can be approximated via <u>finite differences</u> (unit 17) or <u>automatic differentiation</u> (unit 17)
- Making various approximations to the Jacobian $J_F(c^q)$ perturbs the search direction, so robust/safe set approaches to the 1D line search are important for making "progress" towards solutions

Quasi-Newton Methods

- $J_F(c^q)\Delta c^q = (\beta 1)F(c^q)$ is solved to find the search direction Δc^q
- The Jacobian matrix of first derivatives $J_F(c^q)$ needs to be evaluated (given c^q)
- <u>Quasi-Newton</u> approaches make various aggressive approximations to the Jacobian $J_F(c^q)$
- Quasi-Newton can wildly perturb the search direction
 - So, robust/safe set approaches to the 1D line search become quite important for making "progress" towards solutions

Broyden's Method

 An initial guess for the Jacobian is repeatedly corrected with rank one updates, similar in spirit to a secant approach

overwrite Δc^q

- Let $J^0 = I$
- Solve $J^q \Delta c^q = -F(c^q)$ to find search direction Δc^q
 - Use 1D line search to find c^{q+1} and thus $F(c^{q+1})$; then, update $\Delta c^q = c^{q+1} c^q$

• Update
$$J^{q+1} = J^q + \frac{1}{(\Delta c^q)^T \Delta c^q} (F(c^{q+1}) - F(c^q) - J^q \Delta c^q) (\Delta c^q)$$

- Note: $J^{q+1}(c^{q+1}-c^q) = F(c^{q+1}) F(c^q)$
- That is, J^{q+1} satisfies a secant type equation $J\Delta c = \Delta F$

Optimization (see Unit 13)

- Scalar cost function $\hat{f}(c)$ has critical points where $J_{\hat{f}}^T(c) = 0$ (unit 13)
- $H_{\hat{f}}^T(c^q)\Delta c^q = (\beta 1)J_{\hat{f}}^T(c^q)$ is solved to find a search direction Δc^q (unit 14)
- Then, line search utilizes various 1D approaches (unit 15/16)
- The Hessian matrix of second derivatives $H_{\hat{f}}^T(c^q)$ and the Jacobian vector of first derivatives $J_{\hat{f}}^T(c^q)$ both need to be evaluated (given c^q)
- The various entries can be evaluated via <u>finite differences</u> (unit 17) or <u>automatic</u> <u>differentiation</u> (unit 17)
- These approaches can struggle on the Hessian matrix of second partial derivatives

Quasi-Newton Methods (for optimization)

- $H_{\hat{f}}^T(c^q)\Delta c^q = (\beta 1)J_{\hat{f}}^T(c^q)$ is solved to find a search direction Δc^q
- The Hessian matrix of second derivatives $H_{\hat{f}}^T(c^q)$ and the Jacobian vector of first derivatives $J_{\hat{f}}^T(c^q)$ both need to be evaluated (given c^q)
- Second derivatives pose even more issues than first derivatives
- This makes **Quasi-Newton** approaches quite popular for optimization
- When c is large, the $O(n^2)$ Hessian $H_{\hat{f}}^T$ is unwieldy/intractable, so some approaches instead approximate the action of $H_{\hat{f}}^{-T}$ on a vector
 - i.e. the action of $H_{\hat{f}}^{-T}$ on the right hand side

Broyden's Method (for Optimization)

- <u>Same</u> formulation as for nonlinear systems (3 slides prior)
- Solve for the search direction, and use 1D line search to find c^{q+1} and $J_{\hat{f}}^T(c^{q+1})$
- Overwrite $\Delta c^q = c^{q+1} c^q$ and compute $\Delta J_{\hat{f}}^T = J_{\hat{f}}^T(c^{q+1}) J_{\hat{f}}^T(c^q)$
- Update $(H_{\hat{f}}^T)^{q+1} = (H_{\hat{f}}^T)^q + \frac{1}{(\Delta c^q)^T \Delta c^q} \left(\Delta J_{\hat{f}}^T (H_{\hat{f}}^T)^q \Delta c^q \right) (\Delta c^q)^T$
- So that $(H_{\hat{f}}^T)^{q+1} \Delta c^q = \Delta J_{\hat{f}}^T$ is satisfied (a secant type equation)

Broyden's Method (for Optimization)

- For the <u>inverse</u>, using $\Delta c^{q} = c^{q+1} c^{q}$ and $\Delta J_{\hat{f}}^{T} = J_{\hat{f}}^{T}(c^{q+1}) J_{\hat{f}}^{T}(c^{q})$ • Update $(H_{\hat{f}}^{-T})^{q+1} = (H_{\hat{f}}^{-T})^{q} + \frac{\left(\Delta c^{q} - \left(H_{\hat{f}}^{-T}\right)^{q} \Delta J_{\hat{f}}^{T}\right)(\Delta c^{q})^{T}\left(H_{\hat{f}}^{-T}\right)^{q}}{(\Delta c^{q})^{T}(H_{\hat{f}}^{-T})^{q} \Delta J_{\hat{f}}^{T}}$
- So that $(H_{\hat{f}}^{-T})^{q+1} \Delta J_{\hat{f}}^T = \Delta c^q$
- Solving $H_{\hat{f}}^T(c^{q+1})\Delta c^{q+1} = -J_{\hat{f}}^T(c^{q+1})$ is replaced with defining the search direction by $\Delta c^{q+1} = -(H_{\hat{f}}^{-T})^{q+1}J_{\hat{f}}^T(c^{q+1})$

SR1 (Symmetric Rank 1)

- For the <u>inverse</u>, using $\Delta c^q = c^{q+1} c^q$ and $\Delta J_{\hat{f}}^T = J_{\hat{f}}^T (c^{q+1}) J_{\hat{f}}^T (c^q)$ • Update $(H_{\hat{f}}^{-T})^{q+1} = (H_{\hat{f}}^{-T})^q + \frac{\left(\Delta c^q - \left(H_{\hat{f}}^{-T}\right)^q \Delta J_{\hat{f}}^T\right) \left(\Delta c^q - \left(H_{\hat{f}}^{-T}\right)^q \Delta J_{\hat{f}}^T\right)^T}{\left(\Delta c^q - \left(H_{\hat{f}}^{-T}\right)^q \Delta J_{\hat{f}}^T\right)^T \Delta J_{\hat{f}}^T}$ • So that $(H_{\hat{f}}^{-T})^{q+1} \Delta J_{\hat{f}}^T = \Delta c^q$
- Solving $H_{\hat{f}}^T(c^{q+1})\Delta c^{q+1} = -J_{\hat{f}}^T(c^{q+1})$ is replaced with defining the search direction by $\Delta c^{q+1} = -(H_{\hat{f}}^{-T})^{q+1}J_{\hat{f}}^T(c^{q+1})$

DFP (Davidon-Fletcher-Powell)

- For the <u>inverse</u>, using $\Delta c^q = c^{q+1} c^q$ and $\Delta J_{\hat{f}}^T = J_{\hat{f}}^T(c^{q+1}) J_{\hat{f}}^T(c^q)$ • Update $(H_{\hat{f}}^{-T})^{q+1} = (H_{\hat{f}}^{-T})^q - \frac{(H_{\hat{f}}^{-T})^q \Delta J_{\hat{f}}^T \Delta J_{\hat{f}} (H_{\hat{f}}^{-T})^q}{\Delta J_{\hat{f}} (H_{\hat{f}}^{-T})^q \Delta J_{\hat{f}}^T} + \frac{\Delta c^q (\Delta c^q)^T}{(\Delta c^q)^T \Delta J_{\hat{f}}^T}$
- So that $(H_{\hat{f}}^{-T})^{q+1} \Delta J_{\hat{f}}^T = \Delta c^q$
- Solving $H_{\hat{f}}^T(c^{q+1})\Delta c^{q+1} = -J_{\hat{f}}^T(c^{q+1})$ is replaced with defining the search direction by $\Delta c^{q+1} = -(H_{\hat{f}}^{-T})^{q+1}J_{\hat{f}}^T(c^{q+1})$

BFGS (Broyden-Fletcher-Goldfarb-Shanno)

- For the <u>inverse</u>, using $\Delta c^q = c^{q+1} c^q$ and $\Delta J_{\hat{f}}^T = J_{\hat{f}}^T (c^{q+1}) J_{\hat{f}}^T (c^q)$ • Update $(H_{\hat{f}}^{-T})^{q+1} = \left(I - \frac{\Delta c^q \Delta J_{\hat{f}}}{(\Delta c^q)^T \Delta J_{\hat{f}}^T}\right) \left(H_{\hat{f}}^{-T}\right)^q \left(I - \frac{\Delta J_{\hat{f}}^T (\Delta c^q)^T}{(\Delta c^q)^T \Delta J_{\hat{f}}^T}\right) + \frac{\Delta c^q (\Delta c^q)^T}{(\Delta c^q)^T \Delta J_{\hat{f}}^T}$ • So that $(H_{\hat{f}}^{-T})^{q+1} \Delta J_{\hat{f}}^T = \Delta c^q$
- Solving $H_{\hat{f}}^T(c^{q+1})\Delta c^{q+1} = -J_{\hat{f}}^T(c^{q+1})$ is replaced with defining the search direction by $\Delta c^{q+1} = -(H_{\hat{f}}^{-T})^{q+1}J_{\hat{f}}^T(c^{q+1})$

L-BFGS (Limited Memory BFGS)

- Storing an nxn approximation to the inverse Hessian can become unwieldy for large problems
- More efficient to instead store the vectors that describe the outer products; however, the number of vectors grows with *q*
- L-BFGS estimates the inverse Hessian using only a few of the prior vectors
 - often less than 10 vectors (vectors, vector spaces, not matrices)
- This makes it quite popular for machine learning

On optimization methods for deep learning, Andrew Ng et al., ICML 2011

• "we show that more sophisticated off-the-shelf optimization methods such as Limited memory BFGS (L-BFGS) and Conjugate gradient (CG) with line search can significantly simplify and speed up the process of pretraining deep algorithms"

Gradient/Steepest Descent

- Approximate $H_{\hat{f}}^T$ very crudely with the identity matrix
 - which is the first step of all the aforementioned methods
- That is, $H_{\hat{f}}^T(c^q)\Delta c^q = -J_{\hat{f}}^T(c^q)$ becomes $I\Delta c^q = -J_{\hat{f}}^T(c^q)$
- So, the search direction is $\Delta c^q = -J_{\hat{f}}^T(c^q) = -\nabla \hat{f}(c^q)$
 - This is the steepest descent direction
- See unit 19

Coordinate Descent

- Coordinate Descent ignores $H_{\hat{f}}^T(c^q)\Delta c^q = -J_{\hat{f}}^T(c^q)$ completely
- Instead, Δc^q is set to the various coordinate directions \hat{e}_k

Nonlinear Least Squares

- Recall from Unit 13:
 - Determine parameters c that make f(x, y, c) = 0 best fit the training data, i.e. that make $||f(x_i, y_i, c)||_2^2 = f(x_i, y_i, c)^T f(x_i, y_i, c)$ close to zero for all i
 - Combining all (x_i, y_i) , minimize $\hat{f}(c) = \frac{1}{2} \sum_i f(x_i, y_i, c)^T f(x_i, y_i, c)$
- Let m be the number of data points and \widehat{m} be the output size of f(x, y, c)
- Define $\tilde{f}(c)$ by stacking the \hat{m} outputs of f(x, y, c) consecutively m times, so that the vector valued output of $\tilde{f}(c)$ is length $m * \hat{m}$

• Then,
$$\hat{f}(c) = \frac{1}{2} \sum_{i} f(x_i, y_i, c)^T f(x_i, y_i, c) = \frac{1}{2} \tilde{f}^T(c) \tilde{f}(c)$$

Nonlinear Least Squares

• Minimize $\hat{f}(c) = \frac{1}{2}\tilde{f}^T(c)\tilde{f}(c)$

• Jacobian matrix of
$$\tilde{f}$$
 is $J_{\tilde{f}}(c) = \left(\frac{\partial \tilde{f}}{\partial c_1}(c) - \frac{\partial \tilde{f}}{\partial c_2}(c) - \cdots - \frac{\partial \tilde{f}}{\partial c_n}(c)\right)$

• Critical points of $\hat{f}(c)$ have $J_{\hat{f}}^{T}(c) =$

$$\begin{pmatrix} \tilde{f}^{T}(c) \frac{\partial \tilde{f}}{\partial c_{1}}(c) \\ \tilde{f}^{T}(c) \frac{\partial \tilde{f}}{\partial c_{2}}(c) \\ \vdots \\ \tilde{f}^{T}(c) \frac{\partial \tilde{f}}{\partial c_{n}}(c) \end{pmatrix} = J_{\tilde{f}}^{T}$$

$$=J_{\tilde{f}}^{T}(c)\tilde{f}(c)=0$$

Gauss Newton

• $J_{\tilde{f}}^{T}(c)\tilde{f}(c) = 0$ becomes $J_{\tilde{f}}^{T}(c)(\tilde{f}(c^{q}) + J_{\tilde{f}}(c^{q})\Delta c^{q} + \cdots) = 0$

- Using the Taylor series: $\tilde{f}(c) = \tilde{f}(c^q) + J_{\tilde{f}}(c^q)\Delta c^q + \cdots$
- Eliminating high order terms: $J_{\tilde{f}}^{T}(c) (\tilde{f}(c^{q}) + J_{\tilde{f}}(c^{q}) \Delta c^{q}) \approx 0$
- Evaluating $J_{\tilde{f}}^T$ at c^q gives $J_{\tilde{f}}^T(c^q)J_{\tilde{f}}(c^q)\Delta c^q \approx -J_{\tilde{f}}^T(c^q)\tilde{f}(c^q)$
- Compare to $H_{\hat{f}}^T(c^q)\Delta c^q = -J_{\hat{f}}^T(c^q)$ and note that $J_{\hat{f}}^T(c) = J_{\tilde{f}}^T(c)\tilde{f}(c)$
- Thus, Gauss Newton uses the estimate: $H_{\hat{f}}^T(c^q) \approx J_{\tilde{f}}^T(c^q) J_{\tilde{f}}(c^q)$
 - Removes the second derivatives!

Gauss Newton (QR approach)

- Gauss Newton equations $J_{\tilde{f}}^{T}(c^{q})J_{\tilde{f}}(c^{q})\Delta c^{q} = -J_{\tilde{f}}^{T}(c^{q})\tilde{f}(c^{q})$ are the normal equations for $J_{\tilde{f}}(c^{q})\Delta c^{q} = -\tilde{f}(c^{q})$
- So, (instead) solve $J_{\tilde{f}}(c^q)\Delta c^q = -\tilde{f}(c^q)$ via any least squares (QR) and minimum norm approach
- Note: setting the second factor in $J_{\tilde{f}}^T(c)(\tilde{f}(c^q) + J_{\tilde{f}}(c^q)\Delta c^q) \approx 0$ to zero also leads to $J_{\tilde{f}}(c^q)\Delta c^q = -\tilde{f}(c^q)$
- This is a linearization of the nonlinear system $\tilde{f}(c) = 0$, aiming to minimize $\hat{f}(c) = \frac{1}{2}\tilde{f}^T(c)\tilde{f}(c)$

Weighted Gauss Newton

• Given a diagonal matrix D indicating the importance of various equations:

 $DJ_{\tilde{f}}(c^q)\Delta c^q = -D\tilde{f}(c^q)$ $J_{\tilde{f}}^T(c^q)D^2 J_{\tilde{f}}(c^q)\Delta c^q = -J_{\tilde{f}}^T(c^q)D^2\tilde{f}(c^q)$

• Recall: Row scaling changes the importance of the equations

 It also changes the (unique) least squares solution for any overdetermined degrees of freedom

Regularized Gauss Newton

- When concerned about small singular values in $J_{\tilde{f}}(c^q)\Delta c^q = -\tilde{f}(c^q)$, one can add $\epsilon I = 0$ as extra equations (unit 12 regularization)
- This results in $\left(J_{\tilde{f}}^{T}(c^{q})J_{\tilde{f}}(c^{q}) + \epsilon^{2}I\right)\Delta c^{q} = -J_{\tilde{f}}^{T}(c^{q})\tilde{f}(c^{q})$
- This is often called <u>Levenberg-Marquardt</u> or <u>Damped</u> (Nonlinear) Least Squares