Descent Methods

Part II Roadmap

- Part I Linear Algebra (units 1-12) Ac = b
 - linearize

line search

- Part II Optimization (units 13-20)
 - (units 13-16) Optimization -> Nonlinear Equations -> 1D roots/minima ->
 - (units 17-18) Computing/Avoiding Derivatives
 - (unit 19) Hack 1.0: "I give up" H = I and J is mostly 0 (descent methods)
 - (unit 20) Hack 2.0: "It's an ODE!?" (adaptive learning rate and momentum)

-Methods

Theory

Recall: Gradient (Unit 9)

- Consider the scalar (output) function f(c) with multi-dimensional input c
- The Jacobian of f(c) is $J(c) = \left(\frac{\partial f}{\partial c_1}(c) \quad \frac{\partial f}{\partial c_2}(c) \quad \cdots \quad \frac{\partial f}{\partial c_n}(c)\right)$

• The gradient of f(c) is $\nabla f(c) = J^T(c) =$

$$\begin{pmatrix} \frac{\partial f}{\partial c_1}(c) \\ \frac{\partial f}{\partial c_2}(c) \\ \vdots \\ \frac{\partial f}{\partial c_n}(c) \end{pmatrix}$$

• In 1D, both J(c) and $\nabla f(c) = J^T(c)$ are the usual f'(c)

Gradient/Steepest Descent

- Given a cost function $\hat{f}(c)$
 - $\nabla \hat{f}(c)$ is the direction in which $\hat{f}(c)$ increases the fastest
 - $-\nabla \hat{f}(c)$ is the direction in which $\hat{f}(c)$ decreases the fastest
- Thus, $-\nabla \hat{f}(c)$ is considered the direction of steepest descent
- Using $-\nabla \hat{f}(c)$ as the search direction is known as steepest descent
 - This can be thought of as always "walking in the steepest downhill direction"
 - However, never going uphill can lead to local minima
- Methods that use $-\nabla \hat{f}(c)$ in various ways are known as gradient descent methods
- Recall (Unit 18) approximating $H_{\hat{f}}^T \approx I$ in $H_{\hat{f}}^T(c^q)\Delta c^q = -J_{\hat{f}}^T(c^q)$ leads to steepest descent: $\Delta c^q = -J_{\hat{f}}^T(c^q) = -\nabla \hat{f}(c^q)$

Steepest Descent for Quadratic Forms

- Recall (Unit 9):
 - The <u>Quadratic Form</u> of a SPD \tilde{A} is $f(c) = \frac{1}{2}c^T \tilde{A}c \tilde{b}^T c + \tilde{c}$
 - Minimize f(c) by finding critical points where $\nabla f(c) = \tilde{A}c \tilde{b} = 0$
 - That is, solve $\tilde{A}c = \tilde{b}$ to find the critical point
- Recall (Unit 5):
 - Steepest descent search direction: $-\nabla f(c) = \tilde{b} \tilde{A}c = r$

•
$$r^q = b - Ac^q$$
, $\alpha^q = \frac{r^{q} \cdot r^q}{r^{q} \cdot Ar^{q}}$, $c^{q+1} = c^q + \alpha^q r^q$ is iterated until r^q is small enough

- The main drawback to steepest descent is that it repeatedly searches in the same directions too often, especially for higher condition number matrices
- Because it takes far too long for steepest descent to converge, we instead advocated for Conjugate Gradients

Steepest Descent for Quadratic Forms

CG would (instead) solve this in 2 steps

Recall: Nonlinear Least Squares (Unit 18)

- Recall from Unit 13:
 - Determine parameters c that make f(x, y, c) = 0 best fit the training data, i.e. that make $||f(x_i, y_i, c)||_2^2 = f(x_i, y_i, c)^T f(x_i, y_i, c)$ close to zero for all i
 - Combining all (x_i, y_i) , minimize $\hat{f}(c) = \frac{1}{2} \sum_i f(x_i, y_i, c)^T f(x_i, y_i, c)$
- Let m be the number of data points and \widehat{m} be the output size of f(x, y, c)
- Define $\tilde{f}(c)$ by stacking the \hat{m} outputs of f(x, y, c) consecutively m times, so that the vector valued output of $\tilde{f}(c)$ is length $m * \hat{m}$

• Then,
$$\hat{f}(c) = \frac{1}{2} \sum_{i} f(x_i, y_i, c)^T f(x_i, y_i, c) = \frac{1}{2} \tilde{f}^T(c) \tilde{f}(c)$$

Recall: Nonlinear Least Squares (Unit 18)

• Minimize $\hat{f}(c) = \frac{1}{2}\tilde{f}^{T}(c)\tilde{f}(c)$

• Jacobian matrix of
$$\tilde{f}$$
 is $J_{\tilde{f}}(c) = \left(\frac{\partial \tilde{f}}{\partial c_1}(c) - \frac{\partial \tilde{f}}{\partial c_2}(c) - \cdots - \frac{\partial \tilde{f}}{\partial c_n}(c)\right)$

• Critical points of $\hat{f}(c)$ have $J_{\hat{f}}^{T}(c) =$

$$\begin{pmatrix} \tilde{f}^{T}(c) \frac{\partial \tilde{f}}{\partial c_{1}}(c) \\ \tilde{f}^{T}(c) \frac{\partial \tilde{f}}{\partial c_{2}}(c) \\ \vdots \\ \tilde{f}^{T}(c) \frac{\partial \tilde{f}}{\partial c_{n}}(c) \end{pmatrix} = J_{\tilde{f}}^{T}(c)\tilde{f}(c) = 0$$

Steepest Descent for Nonlinear Least Squares

 $\left(-\tilde{f}^{T}(c)\frac{\partial\tilde{f}}{\partial c_{m}}(c)\right)$

• Search direction $-\nabla \hat{f}(c) = -J_{\hat{f}}^T(c) = -J_{\hat{f}}^T(c)\tilde{f}(c) = \begin{pmatrix} -\tilde{f}^T(c)\frac{\partial \tilde{f}}{\partial c_1}(c) \\ -\tilde{f}^T(c)\frac{\partial \tilde{f}}{\partial c_2}(c) \end{pmatrix}$

- Recall that $\tilde{f}(c)$ is constructed by stacking the \hat{m} outputs of $f(x_i, y_i, c)$ consequtively m times, once for each data point (x_i, y_i)
- Thus, each of the *n* terms of the form $-\tilde{f}^T(c)\frac{\partial \tilde{f}}{\partial c_k}(c)$ is a (potentially expensive) sum through $m * \hat{m}$ terms (recall: *m* is the amount of training data)

Descent Options for Nonlinear Least Squares

- When there is a lot of data, *m* can be extremely large
 - This is exacerbated when the $\frac{\partial \tilde{f}}{\partial c_k}$ are expensive to compute
- Using all the data is called **Batch Gradient Descent**
- When only a (typically small) subset of the data is used to compute the search direction (ignoring the rest of the data), this is called <u>Mini-Batch Gradient</u> <u>Descent</u>
- When only a single data point is used to compute the search direction (chosen randomly/sequentially), this is called <u>Stochastic Gradient Descent (SGD)</u>