Descent Methods

Part II Roadmap

- Part I - Linear Algebra (units 1-12) $A c=b$
- Part II - Optimization (units 13-20)

- (units 13-16) Optimization -> Nonlinear Equations -> 1D roots/minima

Theory

- (units 17-18) Computing/Avoiding Derivatives
- (unit 19) Hack 1.0: "I give up" $H=I$ and J is mostly 0 (descent methods)

Methods

- (unit 20) Hack 2.0: "It's an ODE!?" (adaptive learning rate and momentum)

Recall: Gradient (Unit 9)

- Consider the scalar (output) function $f(c)$ with multi-dimensional input c
- The Jacobian of $f(c)$ is $J(c)=\left(\begin{array}{llll}\frac{\partial f}{\partial c_{1}}(c) & \frac{\partial f}{\partial c_{2}}(c) & \cdots & \frac{\partial f}{\partial c_{n}}(c)\end{array}\right)$
- The gradient of $f(c)$ is $\nabla f(c)=J^{T}(c)=\left(\begin{array}{c}\frac{\partial f}{\partial c_{1}}(c) \\ \frac{\partial f}{\partial c_{2}}(c) \\ \vdots \\ \frac{\partial f}{\partial c_{n}}(c)\end{array}\right)$
- In 1D, both $J(c)$ and $\nabla f(c)=J^{T}(c)$ are the usual $f^{\prime}(c)$

Gradient/Steepest Descent

- Given a cost function $\hat{f}(c)$
- $\nabla \hat{f}(c)$ is the direction in which $\hat{f}(c)$ increases the fastest
- $-\nabla \hat{f}(c)$ is the direction in which $\hat{f}(c)$ decreases the fastest
- Thus, $-\nabla \hat{f}(c)$ is considered the direction of steepest descent
- Using $-\nabla \hat{f}(c)$ as the search direction is known as steepest descent
- This can be thought of as always "walking in the steepest downhill direction"
- However, never going uphill can lead to local minima
- Methods that use $-\nabla \hat{f}(c)$ in various ways are known as gradient descent methods
- Recall (Unit 18) approximating $H_{\hat{f}}^{T} \approx I$ in $H_{\hat{f}}^{T}\left(c^{q}\right) \Delta c^{q}=-J_{\hat{f}}^{T}\left(c^{q}\right)$ leads to steepest descent: $\Delta c^{q}=-J_{\hat{f}}^{T}\left(c^{q}\right)=-\nabla \hat{f}\left(c^{q}\right)$

Steepest Descent for Quadratic Forms

- Recall (Unit 9):
- The Quadratic Form of a SPD $\widetilde{\mathrm{A}}$ is $f(c)=\frac{1}{2} c^{T} \tilde{A} c-\tilde{b}^{T} c+\tilde{c}$
- Minimize $f(c)$ by finding critical points where $\nabla f(c)=\tilde{A} c-\tilde{b}=0$
- That is, solve $\tilde{A} c=\tilde{b}$ to find the critical point
- Recall (Unit 5):
- Steepest descent search direction: $-\nabla f(c)=\tilde{b}-\tilde{A} c=r$
- $r^{q}=b-A c^{q}, \alpha^{q}=\frac{r^{q} \cdot r^{q}}{r^{q \cdot A r^{q}}}, c^{q+1}=c^{q}+\alpha^{q} r^{q}$ is iterated until r^{q} is small enough
- The main drawback to steepest descent is that it repeatedly searches in the same directions too often, especially for higher condition number matrices
- Because it takes far too long for steepest descent to converge, we instead advocated for Conjugate Gradients

Steepest Descent for Quadratic Forms

CG would (instead) solve this in 2 steps

Recall: Nonlinear Least Squares (Unit 18)

- Recall from Unit 13:
- Determine parameters c that make $f(x, y, c)=0$ best fit the training data, i.e. that make $\left\|f\left(x_{i}, y_{i}, c\right)\right\|_{2}^{2}=f\left(x_{i}, y_{i}, c\right)^{T} f\left(x_{i}, y_{i}, c\right)$ close to zero for all i
- Combining all $\left(x_{i}, y_{i}\right)$, minimize $\hat{f}(c)=\frac{1}{2} \sum_{i} f\left(x_{i}, y_{i}, c\right)^{T} f\left(x_{i}, y_{i}, c\right)$
- Let m be the number of data points and \widehat{m} be the output size of $f(x, y, c)$
- Define $\tilde{f}(c)$ by stacking the \hat{m} outputs of $f(x, y, c)$ consecutively m times, so that the vector valued output of $\tilde{f}(c)$ is length $m * \widehat{m}$
- Then, $\hat{f}(c)=\frac{1}{2} \sum_{i} f\left(x_{i}, y_{i}, c\right)^{T} f\left(x_{i}, y_{i}, c\right)=\frac{1}{2} \tilde{f}^{T}(c) \tilde{f}(c)$

Recall: Nonlinear Least Squares (Unit 18)

- Minimize $\hat{f}(c)=\frac{1}{2} \tilde{f}^{T}(c) \tilde{f}(c)$
- Jacobian matrix of \tilde{f} is $J_{\tilde{f}}(c)=\left(\begin{array}{llll}\frac{\partial \tilde{f}}{\partial c_{1}}(c) & \frac{\partial \tilde{f}}{\partial c_{2}}(c) & \cdots & \frac{\partial \tilde{f}}{\partial c_{n}}(c)\end{array}\right)$
- Critical points of $\hat{f}(c)$ have $J_{\hat{f}}^{T}(c)=\left(\begin{array}{c}\tilde{f}^{T}(c) \frac{\partial \tilde{f}}{\partial c_{1}}(c) \\ \tilde{f}^{T}(c) \frac{\partial \tilde{f}}{\partial c_{2}}(c) \\ \vdots \\ \tilde{f}^{T}(c) \frac{\partial \tilde{f}}{\partial c_{n}}(c)\end{array}\right)=J_{\tilde{f}}^{T}(c) \tilde{f}(c)=0$

Steepest Descent for Nonlinear Least Squares

- Search direction $-\nabla \hat{f}(c)=-J_{\tilde{f}}^{T}(c)=-J_{\tilde{f}}^{T}(c) \tilde{f}(c)=\left(\begin{array}{c}-\tilde{f}^{T}(c) \frac{\partial \tilde{f}}{\partial c_{1}}(c) \\ -\tilde{f}^{T}(c) \frac{\partial f}{\partial c_{2}}(c) \\ \vdots \\ -\tilde{f}^{T}(c) \frac{\partial \tilde{f}}{\partial c_{n}}(c)\end{array}\right)$
- Recall that $\tilde{f}(c)$ is constructed by stacking the \widehat{m} outputs of $f\left(x_{i}, y_{i}, c\right)$ consequtively m times, once for each data point $\left(x_{i}, y_{i}\right)$
- Thus, each of the n terms of the form $-\tilde{f}^{T}(c) \frac{\partial \tilde{f}}{\partial c_{k}}(c)$ is a (potentially expensive) sum through $m * \widehat{m}$ terms (recall: m is the amount of training data)

Descent Options for Nonlinear Least Squares

- When there is a lot of data, m can be extremely large
- This is exacerbated when the $\frac{\partial \tilde{f}}{\partial c_{k}}$ are expensive to compute
- Using all the data is called Batch Gradient Descent
- When only a (typically small) subset of the data is used to compute the search direction (ignoring the rest of the data), this is called Mini-Batch Gradient Descent
- When only a single data point is used to compute the search direction (chosen randomly/sequentially), this is called Stochastic Gradient Descent (SGD)

