
Descent Methods



Part II Roadmap

• Part I – Linear Algebra (units 1-12) 𝐴𝑐 = 𝑏

• Part II – Optimization (units 13-20)
• (units 13-16) Optimization -> Nonlinear Equations -> 1D roots/minima
• (units 17-18) Computing/Avoiding Derivatives
• (unit 19) Hack 1.0: “I give up” 𝐻 = 𝐼 and 𝐽 is mostly 0 (descent methods)
• (unit 20) Hack 2.0: ”It’s an ODE!?” (adaptive learning rate and momentum)
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Recall: Gradient (Unit 9) 

• Consider the scalar (output) function 𝑓 𝑐  with multi-dimensional input 𝑐
• The Jacobian of 𝑓 𝑐  is 𝐽 𝑐 = !"
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• The gradient of 𝑓 𝑐  is ∇𝑓 𝑐 = 𝐽$ 𝑐 =
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• In 1D, both 𝐽 𝑐  and ∇𝑓 𝑐 = 𝐽$(𝑐) are the usual 𝑓′ 𝑐



Gradient/Steepest Descent

• Given a cost function !𝑓 𝑐
• ∇ "𝑓(𝑐) is the direction in which "𝑓(𝑐)	increases the fastest
• −∇ "𝑓(𝑐) is the direction in which "𝑓(𝑐)	decreases the fastest

• Thus, −∇ !𝑓(𝑐) is considered the direction of steepest descent
• Using −∇ !𝑓(𝑐) as the search direction is known as steepest descent

• This can be thought of as always “walking in the steepest downhill direction”
• However, never going uphill can lead to local minima

• Methods that use −∇ !𝑓(𝑐) in various ways are known as gradient descent methods

• Recall (Unit 18) approximating 𝐻 !"
# ≈ 𝐼 in 𝐻 !"

#(𝑐$)Δ𝑐$ = −𝐽 !"
#(𝑐$) leads to steepest 

descent: 𝛥𝑐$ = −𝐽 !"
# 𝑐$ = −∇ !𝑓(𝑐$)



Steepest Descent for Quadratic Forms

• Recall (Unit 9):
• The Quadratic Form of a SPD /A is 𝑓 𝑐 = %

&
𝑐# 1𝐴𝑐 − 3𝑏#𝑐 + �̃� 

• Minimize 𝑓 𝑐  by finding critical points where ∇𝑓 𝑐 = 1𝐴𝑐 − 3𝑏 = 0
• That is, solve 1𝐴𝑐 = 3𝑏 to find the critical point

• Recall (Unit 5):
• Steepest descent search direction: −∇𝑓 𝑐 = 3𝑏 − 1𝐴𝑐 = 𝑟
• 𝑟$ = 𝑏 − 𝐴𝑐$, 𝛼$ = '!⋅'!

'!⋅)'!
 , 𝑐$*% = 𝑐$ + 𝛼$𝑟$ is iterated until 𝑟$ is small enough

• The main drawback to steepest descent is that it repeatedly searches in the same 
directions too often, especially for higher condition number matrices
• Because it takes far too long for steepest descent to converge, we instead advocated 

for Conjugate Gradients



Steepest Descent for Quadratic Forms

CG would (instead) solve this in 2 steps



Recall: Nonlinear Least Squares (Unit 18)

• Recall from Unit 13: 
• Determine parameters 𝑐 that make 𝑓 𝑥, 𝑦, 𝑐 = 0 best fit the training data, i.e. that make 
𝑓 𝑥!, 𝑦!, 𝑐 "

" = 𝑓 𝑥!, 𝑦!, 𝑐 #𝑓 𝑥!, 𝑦!, 𝑐  close to zero for all 𝑖
• Combining all 𝑥!, 𝑦! , minimize ,𝑓 𝑐 = $

"
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• Let 𝑚 be the number of data points and .𝑚 be the output size of 𝑓 𝑥, 𝑦, 𝑐 	
• Define 3𝑓 𝑐  by stacking the .𝑚 outputs of 𝑓 𝑥, 𝑦, 𝑐  consecutively 𝑚 times, so 

that the vector valued output of 3𝑓 𝑐  is length 𝑚 ∗ .𝑚

• Then, 5𝑓 𝑐 = %
&
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Recall: Nonlinear Least Squares (Unit 18)

• Minimize 5𝑓 𝑐 = %
&
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• Jacobian matrix of 3𝑓 is 𝐽 (" 𝑐 = ! ("
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• Critical points of 5𝑓 𝑐  have 𝐽 )"
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Steepest Descent for Nonlinear Least Squares

• Search direction −∇ 5𝑓 𝑐 = −𝐽 )"
$ 𝑐 = −𝐽 ("
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• Recall that 3𝑓 𝑐  is constructed by stacking the .𝑚 outputs of 𝑓 𝑥' , 𝑦' , 𝑐  
consequtively 𝑚 times, once for each data point 𝑥' , 𝑦'
• Thus, each of the 𝑛 terms of the form − 3𝑓$ 𝑐 ! ("

!#$
𝑐  is a (potentially expensive) 

sum through 𝑚 ∗ .𝑚	terms (recall: 𝑚 is the amount of training data)



Descent Options for Nonlinear Least Squares

• When there is a lot of data, 𝑚 can be extremely large 
• This is exacerbated when the !

("
!#$
	are expensive to compute

• Using all the data is called Batch Gradient Descent

• When only a (typically small) subset of the data is used to compute the search 
direction (ignoring the rest of the data), this is called Mini-Batch Gradient 
Descent

• When only a single data point is used to compute the search direction (chosen 
randomly/sequentially), this is called Stochastic Gradient Descent (SGD)


