
What is Learning?



What is Learning?

• There are lots of answers to this question, and explanations often become 
philosophical
• A more practical question might be:

What can we teach/train a person, animal, or machine to do?



Example: Addition “+”

• How is addition taught in schools?
• Memorize rules for pairs of numbers from the set {0,1,2,3,4,5,6,7,8,9}  
• Memorize redundant rules collectively, for efficiency, e.g. 0+x=x
• Learn to treat powers of 10 implicitly, e.g. 12+34=46 since 1+3=4 and 2+4=6
• Learn to carry when the sum of two numbers is larger than 9
• Learn to add larger sets of numbers by considering them one pair at a time
• Learn how to treat negative numbers
• Learn how to treat decimals and fractions
• Learn how to treat irrational numbers



Knowledge Based Systems (KBS)

Contains two parts:
1) Knowledge Base
• Explicit knowledge or facts
• Often populated by an expert (expert systems)

2) Inference Engine
• Way of reasoning about the facts in order to generate new facts
• Typically follows the rules of Mathematical Logic



KBS Approach to Addition

• Rule: 𝑥 and 𝑦 commute 
• Start with 𝑥 and 𝑦 as single digits, and record all 𝑥 + 𝑦 outcomes as facts
• Add rules to deal with muti-digit numbers by pulling out powers of 10
• Add rules for negative numbers, decimals, fractions, irrationals, etc.

• Mimics human learning (or at least human teaching)
• This is a discrete approach, and it has no inherent error



Machine Learning (ML)

Contains two parts:
1) Training Data
• Data Points - typically as domain/range pairs 
• Hand labeled by a user, measured from the environment, generated 

procedurally, etc.
2) Model
• Derived from the Training Data in order to estimate new data points with 

(hopefully) minimal error
• Uses Algorithms, Statistical Reasoning, Rules, Networks, Etc.



KBS vs. ML

• KBS and ML can be seen as the discrete math and continuous math approaches 
(respectively) to the same problem
• KBS’s Knowledge Base serves the same role as ML’s Training Data
• Logic is the algorithm used to discover new discrete facts for KBS, whereas many 

numerical algorithms/methods are used to approximate continuous facts/data 
for ML
• Logic (in particular) happens to be especially useful for discrete facts
• Numercial algorithms are especially usefully for continuous approximations

• ML, derived from continuous math, will tend to have inherent approximation 
errors



ML Approach to Addition

• Make a 2𝐷 domain in 𝑅!, and a 1𝐷 range in 𝑅" for the addition function 
• As training data, choose a number of input points (𝑥# , 𝑦#) with output  𝑥# + 𝑦#
• Plot the 3D points (𝑥# , 𝑦# , 𝑥#+ 𝑦#) and determine a model function 𝑧 = 𝑓(𝑥, 𝑦)

that best approximates the training data
• Turns out that the plane 𝑧 = 𝑥 + 𝑦 exactly fits the training data
• Only need 3 training points to determine this plane

• Don’t need special rules for negative numbers, decimals, fractions, irrationals 
such as 2 and 𝜋, etc.
• However, small errors in the training data lead to a slightly incorrect plane, which 

has quite large errors far away from the training data
• This can be alleviated to some degree by adding training data where one wants 

smaller errors (and computing the best fitting plane to all the training data)



ML Approach to Addition



Example: Multiplication “∗”

• KBS creates new rules for 𝑥 ∗ 𝑦, utilizing the rules from addition too 

• ML utilizes a set of 3D points (𝑥# , 𝑦# , 𝑥#∗ 𝑦#) as training data, and the model 
function 𝑧 = 𝑥 ∗ 𝑦 can be found to exactly fit the training data
• However, one may claim that it is “cheating” to use an inherently represented floating point 

operation (i.e., multiplication) as the model



ML Approach to Multiplication



Example: Unknown Operation “#”

• KBS fails!
• How can KBS create rules for 𝑥#𝑦 when we don’t even know what #means?
• This is the case for many real-world phenomena that are not fully understood
• However, sometimes it is possible to get some examples of 𝑥#𝑦
• That is, through experimentation or expert knowledge, one might be able to 

discover 𝑧# = 𝑥##𝑦# for some number of pairs (𝑥# , 𝑦#)
• Subsequently, these known (or estimated) 3𝐷 points (𝑥# , 𝑦# , 𝑧#) can be used as 

training data to determine a model function 𝑧 = 𝑓(𝑥, 𝑦) that approximately fits 
the data



Determining the Model Function

• How does one determine 𝑧 = 𝑓(𝑥, 𝑦) near the training data, so that it robustly 
predicts/infers �̂� for new inputs (3𝑥, 3𝑦) not contained in the training data?
• How does one minimize the effect of inaccuracies or noise in the training data?

• Caution: away from the training data, the model function 𝑓 is likely to be highly 
inaccurate (extrapolation is ill-posed)



Nearest Neighbor

• If asked to multiply 51.023 times 298.5, one might quickly estimate that 50
times 300 is 15,000
• This is a nearest neighbor algorithm, relying on nearby data where the answer is 

known, better known, or more easy to come by
• Given 3𝑥 , 3𝑦 , find the closest (Euclidean distance) training data (𝑥# , 𝑦#) and 

return its associated 𝑧# (with error 𝑧# − �̂� )
• This represents 𝑧 = 𝑓(𝑥, 𝑦) as a piecewise constant function with discontinuities 

on the boundaries of Voronoi regions around the training data
• This is the simplest possible Machine Learning algorithm (a piecewise constant 

function), and it works in an arbitrary number of dimensions



Data Interpolation

• In order to elucidate various concepts, let’s consider data interpolation in more 
detail

• Let’s begin with a very simple case with 1𝐷 inputs and 1𝐷 outputs, i.e. 𝑦 = 𝑓(𝑥)



Polynomial Interpolation

• Given 1 data point, one can (at best) draw a constant function 



Polynomial Interpolation

• Given 2 data points, one can (at best) draw a linear function



Polynomial Interpolation

• Given 3 data points, one can (at best) draw a quadratic function



Polynomial Interpolation

• Unless all 3 points are on the same line, in which case one can only draw a linear 
function



Polynomial Interpolation

• Given 𝑚 data points, one can (at best) draw a unique 𝑚 − 1 degree polynomial 
that goes through all of them
• As long as they are not degenerate, like 3 points on a line



Overfitting

• Given a new input 3𝑥, the interpolating polynomial infers/predicts an output 3𝑦
that may be far from what one may expect

• Interpolating polynomials are smooth (continuous 
function and derivatives)

• Thus, they wiggle/overshoot in between data points 
(so that they can smoothly turn back and hit the 
next point)

• Overly forcing polynomials to exactly hit every data 
point is called overfitting (overly fitting to the data)

• It results in inference/predictions that can vary 
wildly from the training data 



Regularization

• Using a lower order polynomial that doesn’t (can’t) exactly fit the data points 
provides some degree of regularization

• A regularized interpolant contains intentional errors 
in the interpolation, missing some/all of the data 
points 

• However, this hopefully makes the function more 
predictable/smooth in between the data points 

• The data points themselves may contain 
noise/error, so it is not clear whether they should 
be interpolated exactly anyways 



Regularization

• Given 3𝑥, the regularized interpolant infers/predicts a more reasonable 3𝑦

• There is a trade-off between sacrificing accuracy 
on fitting the original input data, and obtaining 
better accuracy on inference/prediction for new 
inputs



Underfitting

• Using too low of an order polynomial causes it to miss the data by too much

• A linear function doesn’t capture the essence of 
this data as well as a quadratic function does 

• Choosing too simple of a model function or 
regularizing too much prevents one from properly 
representing the data



Nearest Neighbor

• Piecewise-constant interpolation on this data (equivalent to nearest neighbor)

• The reasonable behavior of the piecewise constant 
(nearest neighbor) function stresses the 
importance of approximating data locally

• We address Local Approximations in Unit 6



Caution: Overfitting

• Higher order polynomials tend to oscillate wildly, but even a simple quadratic 
polynomial can overfit by quite a bit



Caution: Overfitting

• A piecewise linear approach works much better on this data



Noisy Data

• There may be many sources of error in data, so it can be unwise to attempt to fit 
data too closely



Linear Regression

• One commonly fits a low order model to such data, while minimizing some 
metric of mis-interpolating or mis-representing the data 



Noise vs. Features

• But how does one differentiate between noise and features?



Noise vs. Features

• When training a neural network, split the available data into 3 sets
• E.g., 80% training data, 10% model validation data, and 10% test data
• Training data is used to train the neural network
• An interpolating function is fit to the training data (potentially overfitting it)

• When considering features vs. noise, overfitting, etc., model validation data is 
used to select the best model function or the best fitting strategy 
• Compare inference/prediction on model validation data to the known answers

• Finally, when disseminating results advocating the “best” validated model, 
inferencing on the test data gives some idea as to how well that validated model 
might generalize to unseen data
• Competitions on unseen data have become a good way to stop “cheating” on test data 



Errors in Equations

• Modeling errors – Parts of a problem under consideration might be ignored. E.g., 
when simulating solids/fluids, sometimes frictional/viscous effects are not 
included.
• Empirical constants – Some numbers are unknown, and measured with limited 

precision. Others may be known more accurately, but limited precision hinders 
the ability to express them. E.g. Avogadro’s number, the speed of light in a 
vacuum, the charge on an electron, Planck’s constant, Boltzmann’s constant, pi, 
etc. (Note that the speed of light is 299792458 m/s exactly, so ok for double 
precision but not for single precision.)



Errors in Numerical Methods

• Rounding errors: Even integer calculations lead to floating point numbers, e.g.
5/2=2.5, and floating point calculations frequently admit rounding errors, e.g.
1./3.=.3333333… cannot be expressed on the computer. Machine precision is 
10$% for single precision and 10$"& for double precision.
• Truncation errors – Also called discretization errors. These occur in the 

mathematical approximation of an equation as opposed to an approximation of 
the physics (modeling errors). E.g. one (often) cannot take a derivative/integral 
exactly on a computer, and instead approximates them (recall Simpson’s rule 
from Calculus).



Errors in Inputs

• Inaccurate inputs – Often, one is only concerned with part of a calculation, 
where a given set of inputs is used to produce outputs. Those inputs may have 
previously been subjected to any of the errors listed above, and thus may already 
have limited accuracy. This has implications for various algorithms. E.g., if inputs 
are only accurate to 4 decimal places, it probably doesn’t make sense to carry out 
an algorithm to an accuracy of 8 decimal places.
• Inaccurate Measurements – It can be difficult to accurately measure real-world 

phenomena, generating another source of inaccurate inputs. 



A Robust Computational Approach

• Well Posedness: A problem is ill-posed if small changes in the inputs lead to large 
changes in the outputs. Any source of error dominates the result.
• Condition Number: An algorithm is ill-conditioned if small changes in the inputs 

lead to large changes in the outputs. Large condition numbers are bad (sensitive), 
and small condition numbers are good (insensitive). If the relative changes in the 
inputs and outputs are identical, the condition number is 1.
• Stability: An algorithm is stable if it can complete itself in any meaningful way. 

Unstable algorithms give wild (explosive) results, usually leading to NaN’s.
• Accuracy: Accuracy refers to the size of the error, or how close the answer is to 

the correct solution.



A Robust Computational Approach

• A problem should be well-posed before even considering it computationally
• Computational Approach:
• 1) Conditioning - formulate a well-conditioned approach, or as well-

conditioned as is possible
• 2) Stability - devise a stable algorithm; otherwise, the result is typically NaNs
• 3) Accuracy – even a well-conditioned and stable approach can result in large 

errors; so, make the algorithm as accurate as is warranted or practical



Being Careful: Vector Norms

• Consider the norm of a vector:  𝑥 ! = 𝑥"! +⋯+ 𝑥'!

• Straightforward algorithm:
for (i=1,m) sum+=x(i)*x(i); return sqrt(sum); 

• This can overflow MAX_FLOAT/MAX_DOUBLE for large 𝑚

• Safer algorithm:
find z=max(abs(x(i)))

for (i=1,m) sum+=sqr(x(i)/z); return z*sqrt(sum);



Being Careful: Quadratic Formula
• Consider .0501𝑥! − 98.78𝑥 + 5.015 = 0
• To 10 digits of accuracy: 𝑥 ≈ 1971.605916 and 𝑥 ≈ .05077069387

• Using 4 digits of accuracy in the quadratic formula gives:
().%)+().%%

.",,!
= 1972 and     ().%)$().%%

.",,!
= .0998

• The second root is completely wrong (in the leading significant digit!)

• De-rationalize:  $-± -!$/01
!0

to  !2
$-∓ -!$/01

• Using 4 digits of accuracy in this de-rationalized quadratic formula gives:
",.,4

().%)$().%%
= 1003 and   ",.,4

().%)+().%%
= .05077

• Now the second root is fine, but the first root is wrong!

• Conclusion: use one formula for each root



Being Careful: L’Hopitals Rule

• Consider 5
!$/
5$!

near 𝑥 = 2 where it becomes ,
,

• Adding a small number to the denominator 5
!$/

5$!+6
incorrectly gives 0 near 𝑥 = 2

• Noting that 5
!$/
5$!

= 𝑥 + 2 leads to correct values near 4 when 𝑥 is near 2

• Similar issues occur for 789 5
5

near 𝑥 = 0

• Similar issues occur for 0 times ∞ and other cases where L’Hopitals rule is needed 
to address removable singularities



Did you know about these issues?

• Imagine debugging code with the correct quadratic formula implementation and 
getting zero digits of accuracy on a test case!



Polynomial Interpolation

• Given 𝑚 data points (𝑥# , 𝑦#), find the unique polynomial that passes through 
them: 𝑦 = 𝑐" + 𝑐!𝑥 + 𝑐4𝑥! +⋯+ 𝑐'𝑥'$"

• Write an equation for each data point, note that the equations are linear, and put 
into matrix form
• For example, consider (1,3), (2,4), (5, −3) and a quadratic polynomial 

• Then, 
1 1 1
1 2 4
1 5 25

𝑐"
𝑐!
𝑐4

=
3
4
−3

  gives

𝑐"
𝑐!
𝑐4

=
1/3
7/2
−5/6

 and 𝑓 𝑥 = "
4
+ %

!
𝑥 − :

&
𝑥!



Polynomial Interpolation

• In general, solve 𝐴𝑐 = 𝑦 where 𝐴 (the Vandermonde matrix) has a row for each 
data point of the form (1 𝑥# 𝑥#! ⋯ 𝑥#'$")

• Monomials look more similar at higher powers
• This makes the rightmost columns of a Vandermonde matrix 

tend to become more parallel
• Round-off errors and other numerical approximations exacerbate this

• More parallel columns make the matrix less invertible, and 
thus it becomes more difficult to solve for the parameters 𝑐!

• Too nearly parallel columns make the matrix ill-conditioned to 
invert (and thus difficult/impossible to invert with a computer)

𝑓 𝑥 = 1, 𝑥, 𝑥!, 𝑥", 𝑥#, 𝑥$, 𝑥%, x&, x'



Matrix Columns as Vectors

• Let the k-th column of 𝐴 be vector 𝑎A, so 𝐴𝑐 = 𝑦 is equivalent to ∑A 𝑐A𝑎A = 𝑦
• Find a linear combination of the columns of 𝐴 that gives the right hand side 

vector 𝑦



Matrix Columns as Vectors

• As columns become more parallel, the values of 𝑐 become arbitrarily large, ill-
conditioned, and prone to error

• In this example, the red vectors go too far to 
the right and back in order to (fully) illustrate



Singular Matrices

• If two columns of a matrix are parallel, they may be combined in an infinite 
number of ways while still obtaining the same result
• Thus, the problem does not have a unique solution

• In addition, the 𝑛 columns of 𝐴 span at most an 𝑛 − 1 dimensional subspace 
• So, the range of 𝐴 is at most 𝑛 − 1 dimensional

• If the right hand side vector is not contained in this 𝑛 − 1 dimensional subspace, 
the problem has no solution
• otherwise, there are infinite solutions



Singular Matrices

• If any column of a matrix is a linear combination of other columns, they may be 
combined in an infinite number of ways while still obtaining the same result
• Thus, the problem does not have a unique solution

• In addition, the 𝑛 columns of 𝐴 span at most an 𝑛 − 1 dimensional subspace 
• So, the range of 𝐴 is at most 𝑛 − 1 dimensional 

• If the right hand side vector is not contained in this 𝑛 − 1 dimensional subspace, 
the problem has no solution
• otherwise, there are infinite solutions



Near Singular Matrices

• With limited numerical precision, one struggles when columns (or linear 
combinations of columns) are too close to being parallel to each other
• Analytically invertible matrices may not be computationally invertible
• A condition number can be used to describe how close a matrix is to being non-

invertible on a computer
• The condition number is ∞ for a singular matrix and 1 for the identity matrix 



Being Careful: Polynomial Interpolation

• Given basis functions 𝜙 and unknowns 𝑐:
𝑦 = 𝑐"𝜙" + 𝑐!𝜙! +⋯+ 𝑐B𝜙B

• Monomial basis: 𝜙A 𝑥 = 𝑥A$"

• As we have seen, the Vandermonde matrix may become near-singular and 
difficult to invert!



Lagrange Basis

• Basis functions:  𝜙A 𝑥 = ∏"#$ 5$5"
∏"#$ 5$$5"

• Thus, 𝜙A 𝑥A = 1
• Thus, 𝜙A 𝑥# = 0 for 𝑖 ≠ 𝑘
• As usual: write an equation for each point, note that the equations are linear, and 

put into matrix form
• Obtain 𝐴𝑐 = 𝑦 where 𝐴 is the identity matrix (i.e. 𝐼𝑐 = 𝑦), so 𝑐 = 𝑦 trivially
• Easy to solve for 𝑐, but evaluation of the polynomial (with lots of terms) is 

expensive
• i.e. inference is expensive



Lagrange Basis

• Consider data (1,3), (2,2), (3,3) with quadratic basis functions that are 1 at their 
corresponding data point and 0 at the other data points

• 𝜙" 𝑥 = (5$!)(5$4)
("$!)("$4)

= "
!
(𝑥 − 2)(𝑥 − 3)

• 𝜙" 1 = 1, 𝜙" 2 = 0, 𝜙" 3 = 0
• 𝜙! 𝑥 = (5$")(5$4)

(!$")(!$4)
= −(𝑥 − 1)(𝑥 − 3)

• 𝜙! 1 = 0, 𝜙! 2 = 1, 𝜙! 3 = 0
• 𝜙4 𝑥 = (5$")(5$!)

(4$")(4$!)
= "

!
(𝑥 − 1)(𝑥 − 2)

• 𝜙4 1 = 0, 𝜙4 2 = 0, 𝜙4 3 = 1



Newton Basis

• Basis functions: 𝜙A 𝑥 = ∏#F"
A$" 𝑥 − 𝑥#

• 𝐴𝑐 = 𝑦 has a lower triangular 𝐴 (as opposed to being dense or diagonal)
• Columns don’t overlap, and it’s not too expensive to evaluate/inference
• Can solve via a divided difference table:
• Initially: 𝑓 𝑥# = 𝑦#
• Then, at each level, recursively: 𝑓 𝑥", 𝑥!, ⋯ , 𝑥A = G 5!,5%,⋯,5$ $G[5&,5!,⋯,5$'&]

5$$5&
• Finally: 𝑐A = 𝑓[𝑥", 𝑥!, ⋯ , 𝑥A]

• As usual, high order polynomials still tend to be oscillatory
• Using unequally spaced data points can help, e.g. Chebyshev points



Summary

• Monomial/Lagrange/Newton basis all give the same exact unique polynomial
• as one can see by multiplying out and collecting like terms

• But the representation used makes it easier/harder to find the polynomial as well 
as to subsequently evaluate the polynomial



Representation Matters

• Consider:                      Divide CCX by VI
• As compared to:          Divide 210 by 6

• See Chapter 15 on Representation Learning in the Deep Learning book



Predict 3D Cloth Shape from Body Pose

• Input: pose parameters 𝜃 are joint rotation matrices
• 10 upper body joints with a 3𝑥3 rotation matrix for each gives a 90𝐷 pose 

vector (30𝐷 when using quaternions)
• Ignore global translation/rotation of the root frame

• Output: 3𝐷 cloth shape 𝜑
• 3,000 vertices in a cloth triangle mesh gives a 9,000𝐷 shape vector

• Function 𝑓: 𝐑90 → 𝐑9000



Approach

• Given: 𝑚 training data points (𝜃𝑖, 𝜑𝑖) generated from the true/approximated 
function 𝜑# = 𝑓 𝜃#
• E.g. using physical simulation or computer vision techniques

• Goal: learn an S𝑓 that approximates 𝑓
• i.e. .𝑓 𝜃 = 2𝜑 ≈ 𝜑 = 𝑓 𝜃

• Issue: As joints rotate (rotation is highly nonlinear), cloth vertices move in 
complex nonlinear ways that are difficult to capture with a neural network
• i.e. it is difficult to ascertain a suitable .𝑓

• How should the nonlinear rotations be handled?



Skinning

• Each vertex of the body surface mesh is 
associated with one or more nearby bones
• A weight (for each bone/vertex pair) dictates 

how much a change in a bone’s 
position/orientation impacts a vertex’s 
position
• As the pose changes, bone changes dictate 

new positions for body surface mesh vertices
Credit: Blender website

• Deforms a body surface mesh to match a skeletal pose
• well studied and widely used in graphics



Leveraging Skinning (to be careful)
• Leverage the plethora of prior work on procedural skinning to estimate the body 

surface mesh 𝑆 based on pose parameters 𝜃
• Then, represent the cloth mesh as offsets 𝐷 𝜃 from the skinned mesh 𝑆 𝜃
• Overall, 𝜑 = 𝑓(𝜃) = 𝑆 𝜃 + 𝐷 𝜃 , where only 𝐷 𝜃 needs to be learned

• The skinning prior 𝑆 𝜃 captures much of the nonlinearities, so that the 
remaining 𝐷 𝜃 is a smoother function and thus easier to approximate/learn



Shrink Wrap the Cloth Mesh

• Shrink-wrap the cloth vertices to the body triangle mesh
• Barycentrically embed the cloth vertices to follow body mesh triangles
• As the body deforms, cloth vertices move with their parent triangles



Displacement Map

• Assign (𝑢, 𝑣) texture coordinates to the cloth vertices and transfer the mesh into 
texture space
• Store (𝑢, 𝑣, 𝑛) offsets in texture space
• Convert (𝑢, 𝑣, 𝑛) offsets to RGB-triple color values



Displacement Map



Image Based Cloth
• Rasterize triangle vertex colors to 2D image pixels (in texture space)
• Function output becomes a 2D RGB image, instead of displacements
• The images are more continuous than cloth vertices (which have discrete 

mesh/graph topology)
• Learn to predict images as a function of pose 𝜃, using Convolutional Neural 

Networks (CNNs)



Training Data
• For each pose in the training data, calculate per-vertex offsets and rasterize them 

into an image in texture space



Inference
• Learn to predict an image from pose parameters, i.e. learn S𝐼 𝜃 ≈ 𝐼 𝜃
• Given an inferenced S𝐼 𝜃 , interpolate to cloth vertices and convert RGB values to 

offsets added to the skinned vertex positions: 3𝜑 𝜃 = 𝑆 𝜃 + 𝜓( S𝐼 𝜃 )

Pose 𝜃 

Network
Inference


