
Linear Systems



Motivation

• “Matrices are bad, vector spaces are good”
• Don’t think of matrices as a collection of numbers 
• Instead, think of the columns as vectors in a high dimensional space

• We don’t have great intuition going from 𝑅! to 𝑅" to 𝑅# to 𝑅$ (for large 𝑛)
• Thinking about vectors in high dimensional spaces is a good way of gaining 

intuition about what’s going on
• Linear algebra contains a lot of machinery for dealing with, discussing, and 

gaining intuition about vectors in high dimensional spaces
• We will cover linear algebra from the viewpoint of understanding higher 

dimensional spaces



System of Linear Equations

• System of equations: 3𝑐! + 2𝑐" = 6 and	−4𝑐! + 𝑐" = 7

• Matrix form: 3 2
−4 1

𝑐!
𝑐" = 6

7 or 𝐴𝑐 = 𝑏

• Given 𝐴 and 𝑏, determine 𝑐
• Theoretically, there is a unique solution, no solution, or infinite solutions
• Ideally, software would determine whether there was a unique solution, no 

solution, or infinite solutions; in the last case, it would list a parameterized family 
of solutions. Unfortunately, this is quite difficult to accomplish.

• Note: in this class, 𝑥 is used for data, and 𝑐 is used for unknowns (such as for the 
unknown parameters of a neural network)



“Zero”

• On the computer, defining “zero” is not straightforward
• When dealing with large numbers (e.g. Avogadro’s number: 6.022𝑒23) zero can 

be quite large
• E.g. 6.022𝑒23 − 1𝑒7 = 6.022𝑒23 in double precision, making 1𝑒7 behave like 

“zero”
• When dealing with small numbers (e.g. 1𝑒 − 23), “zero” is much smaller
• In this case, on the order of 1𝑒 − 39 in double precision

• Mixing big and small numbers often wreaks havoc on algorithms
• So, we typically non-dimensionalize and normalize to make equations 𝑂(1) as 

opposed to 𝑂(“𝑏𝑖𝑔”) or 𝑂(“𝑠𝑚𝑎𝑙𝑙”)



Row/Column Scaling

• Consider:                      3𝑒6 2𝑒10
1𝑒 − 4 0

𝑐!
𝑐" = 5𝑒10

6
• Row Scaling - divide first row by 1e10 to obtain:

3𝑒 − 4 2
1𝑒 − 4 0

𝑐!
𝑐" = 5

6
• Column Scaling - define a new variable 𝑐# = 1𝑒 − 4 𝑐! to obtain: 

3 2
1 0

𝑐#
𝑐" = 5

6
• The final matrix is much easier to treat with finite precision arithmetic
• Solve for 𝑐# and 𝑐"; then, 𝑐! = 1𝑒4 𝑐#



Some Definitions…

• Elements of a matrix are often referred to by their row and column
• For example, 𝑎%& is the element of matrix 𝐴 in row 𝑖 and column 𝑘

• Transpose swaps the row and column of every entry
• 𝐴' moves element 𝑎%& to row 𝑘 column 𝑖 (and vice versa)

• Non-square matrices change size: 
1 4
2 5
3 6

'

= 1 2 3
4 5 6

Symmetric Matrices have 𝐴' = 𝐴 meaning that 𝑎%& = 𝑎&% for all 𝑖 and 𝑘



Square Matrices

• A size 𝑚𝑥𝑛 matrix has 𝑚 rows and 𝑛 columns
• For now, let’s just consider square 𝑛𝑥𝑛 matrices
• We will consider non-square (rectangular) matrices with 𝑚 ≠ 𝑛 a bit later



Solvability

• Singular – 𝐴 is singular when it is not invertible (does not have an inverse) 
• Various ways of showing this:

• At least one column is linearly dependent on others (as discussed in Unit 1)
• The determinant is zero: det 𝐴 = 0
• 𝐴 has a nonempty null space, i.e. ∃𝑐 ≠ 0 with 𝐴𝑐 = 0

• Rank - maximum number of linearly independent columns
• Singular matrices have rank < 𝑛 (the # of columns), i.e. they are rank-deficient

• So, they have either no solution or infinite solutions
• Nonsingular square matrices are invertible: 𝐴𝐴!" = 𝐴!"𝐴 = 𝐼

• So, 𝐴𝑐 = 𝑏 can be solved for 𝑐 via 𝑐 = 𝐴!"𝑏
• Note: we typically do not compute the inverse, but instead have a solution algorithm 

that exploits its existence



Matrices as Vectors (an example)

• Recall 𝐴𝑐 = ∑& 𝑐&𝑎& where the 𝑎& are the columns of 𝐴

• Consider 𝐴𝑐 = 0 or ∑& 𝑐&𝑎& = 0
• If one column is a linear combination of others, then the linear combination 

weights can be used to obtain 𝐴𝑐 = 0 with 𝑐 nonzero
• This nonzero 𝑐 is in the null space of 𝐴, and 𝐴 is singular

• Conversely: If the only solution to 𝐴𝑐 = 0 is 𝑐 identically 0, then no column is 
linearly dependent on the others
• Thus, 𝐴 is nonsingular   



Diagonal Matrices

• All off-diagonal entries are 0
• Equations are decoupled, and easy to solve

• E.g. 5 0
0 2

𝑐!
𝑐" = 10

−1 has 5𝑐! = 10 and 2𝑐" = −1; so, 𝑐! = 2 and 𝑐" = −.5

• A zero on the diagonal indicates a singular system
• Either no solution (e.g. 0𝑐! = 10) or infinite solutions (e.g. 0𝑐! = 0)

• The determinant of a diagonal matrix is obtained by multiplying all the diagonal 
elements together
• Thus, a 0 on the diagonal implies a zero determinant and a singular matrix



Upper Triangular Matrices

• All entries below the diagonal are 0
• Nonsingular when the diagonal elements are all nonzero
• Determinant is obtained by multiplying all the diagonal elements together 

• Solve via back substitution

• E.g. consider 
2 3 1
0 1 −1
0 0 5

𝑐!
𝑐"
𝑐#

=
0
10
10

• Start at the bottom: 5𝑐" = 10; so, 𝑐" = 2
• Move up one row: 𝑐# − 𝑐" = 10; so, 𝑐# − 2 = 10 and 𝑐# = 12
• Move up one row: 2𝑐! + 3𝑐# + 𝑐" = 0; so, 2𝑐! + 36 + 2 = 0 and 𝑐! = −19



Lower Triangular Matrices

• All entries above the diagonal are 0
• Nonsingular when the diagonal elements are all nonzero
• Determinant is obtained by multiplying all the diagonal elements together 

• Solve via forward substitution

• E.g. consider 
5 0 0
−1 1 0
1 3 2

𝑐!
𝑐"
𝑐#

=
10
10
0

• Start at the top: 5𝑐! = 10, so, 𝑐! = 2
• Move down one row: −𝑐! + 𝑐# = 10; so, −2 + 𝑐# = 10 and 𝑐# = 12
• Move down one row: 𝑐! + 3𝑐# + 2𝑐" = 0; so, 2 + 36 + 2𝑐" = 0 and c" = −19



Elimination Matrix

• Given a column 

𝑎!$
⋮
𝑎%$
𝑎%&!,$
⋮

𝑎($

, define 𝑚%$ =
!
)!"

0
⋮
0

𝑎%&!,$
⋮

𝑎($
• Then, the size 𝑚𝑥𝑚 elimination matrix 𝑀%$ = 𝐼(*( −𝑚%$�̂�%+ subtracts multiples of row 𝑖 from 

rows > 𝑖 in order to create zeroes in column 𝑘

• Standard basis vector �̂�% =

0
⋮
0
1
0
⋮
0

has  a 1 in the 𝑖-th row



Elimination Matrix

• Let 𝑎& =
2
4
−8

• 𝑀!& =
1 0 0
0 1 0
0 0 1

− !
"

0
4
−8

1 0 0 =
1 0 0
−2 1 0
4 0 1

and 𝑀!&𝑎& =
2
0
0

• 𝑀"& =
1 0 0
0 1 0
0 0 1

− !
(

0
0
−8

0 1 0 =
1 0 0
0 1 0
0 2 1

and 𝑀"&𝑎& =
2
4
0



Elimination Matrix Inverse

• Inverse of an elimination matrix is  𝐿%& = 𝑀%&
)! = 𝐼*+* +𝑚%&�̂�%'

• 𝐿%& is a size 𝑚𝑥𝑚 elimination matrix that adds multiples of row 𝑖 to rows > 𝑖 in 
order to reverse the effect of 𝑀%&

• 𝐿!& = 𝑀!&
)! =

1 0 0
2 1 0
−4 0 1

• 𝐿"& = 𝑀"&
)! =

1 0 0
0 1 0
0 −2 1



Combining Elimination Matrices

• 𝑀%!&!𝑀%"&" = 𝐼 −𝑚%!&!�̂�%!
' −𝑚%"&"�̂�%"

' when	𝑖! < 𝑖" (but	not	when	𝑖! > 𝑖")

𝑀!&𝑀"& =
1 0 0
−2 1 0
4 2 1

,	but	𝑀"&𝑀!& =
1 0 0
−2 1 0
0 2 1

• 𝐿%!&!𝐿%"&" = 𝐼 +𝑚%!&!�̂�%!
' +𝑚%"&"�̂�%"

' when	i! < 𝑖" (but	not	when	𝑖! > 𝑖")

𝐿!&𝐿"& =
1 0 0
2 1 0
−4 −2 1

,	but	𝐿"&𝐿!& =
1 0 0
2 1 0
−8 −2 1



Gaussian Elimination

• Consider 
2 4 −2
4 9 −3
−2 −3 7

𝑐"
𝑐#
𝑐$

=
2
8
10

• 𝑀""𝐴 =
1 0 0
−2 1 0
1 0 1

2 4 −2
4 9 −3
−2 −3 7

=
2 4 −2
0 1 1
0 1 5

and 𝑀""𝑏 =
2
4
12

• 𝑀##𝑀""𝐴 =
1 0 0
0 1 0
0 −1 1

2 4 −2
0 1 1
0 1 5

=
2 4 −2
0 1 1
0 0 4

and 𝑀##𝑀""𝑏 =
2
4
8

• Then, solve the upper triangular 
2 4 −2
0 1 1
0 0 4

𝑐"
𝑐#
𝑐$

=
2
4
8

via back substitution



LU Factorization

• Gaussian Elimination gives an upper triangular 𝑈 = 𝑀#!",#!"⋯𝑀%%𝑀""𝐴
• Using inverses, 𝐴 = 𝐿""𝐿%%⋯𝐿#!",#!"𝑀#!",#!"⋯𝑀%%𝑀""𝐴 = 𝐿""𝐿%%⋯𝐿#!",#!"𝑈
• Since 𝐿&%&%𝐿&&&& = 𝐼 +𝑚&%&%�̂�&%

' +𝑚&&&&�̂�&&
' when 𝑖" < 𝑖%, 𝐿 = 𝐿""𝐿%%⋯𝐿#!",#!" is lower 

triangular and 𝐴 = 𝐿𝑈

• Here 𝐿 = 𝐿""𝐿%% =
1 0 0
2 1 0
−1 0 1

1 0 0
0 1 0
0 1 1

=
1 0 0
2 1 0
−1 1 1

𝐴 =
2 4 −2
4 9 −3
−2 −3 7

=
1 0 0
2 1 0
−1 1 1

2 4 −2
0 1 1
0 0 4

= 𝐿𝑈



LU Factorization

• Factoring 𝐴 = 𝐿𝑈 helps to solve 𝐴𝑐 = 𝑏

• In order to solve 𝐿𝑈𝑐 = 𝑏, define an auxiliary variable �̂� = 𝑈𝑐
• First, solve 𝐿�̂� = 𝑏 for �̂� via forward substitution
• Second, solve 𝑈𝑐 = �̂� for 𝑐 via back substitution

• Note: the LU factorization is only computed once, and then can be used 
afterwards on many right hand side vectors (on many 𝑏 vectors)



Pivoting

• 𝐴 = 0 4
4 9 requires division by zero in order to create 𝑀!!

• (Partial) Pivoting - swap rows to use the largest (magnitude) element in the 
column under consideration
• Don’t forget to swap the right hand side 𝑏 too

• Full Pivoting swap rows and columns to use the largest possible element
• Don’t forget to change the order of the unknowns 𝑐

• When considering column 𝑘, can only swap with rows/columns ≥ 𝑘



Permutation Matrix

• Constructed by switching the 2 rows of 𝐼 that one wants swapped

• E.g. 𝑃!# =
0 0 1
0 1 0
1 0 0

, and 𝑃!#𝐴 swaps the first and third rows of 𝐴

• Permutation matrices are their own inverses (swapping again restores the rows)
• Switching rows 𝑖! and 𝑖" moves a 1 from 𝑎%!%! to 𝑎%"%! as well as from 𝑎%"%" to 
𝑎%!%", preserving symmetry (i.e. 𝑃%!%"

' = 𝑃%!%")

• To swap the first and third unknowns: 𝐴𝑐 = 𝐴𝑃!#𝑃!#𝑐 = (𝐴𝑃!#)(𝑃!#𝑐) where 
𝑃!#𝑐 swaps the unknowns and 𝐴𝑃!# swaps the columns (to see this, consider 
𝐴𝑃!# '' = (𝑃!#𝐴')' which swaps the rows of 𝐴')



Full Pivoting

• Let 𝑃(' be the permutation matrix that (potentially) switches row 𝑖 with a row > 𝑖
• Let 𝑃)( be the permutation matrix that (potentially) switches column 𝑘 with a col > 𝑘
• Then full pivoting can be written as:

(𝑀#!",#!"𝑃()*%⋯𝑀%%𝑃(&𝑀""𝑃(%𝐴𝑃)%𝑃)&⋯𝑃))*%)(𝑃))*%⋯𝑃)&𝑃)%𝑐)

• Once known, 𝑃( = 𝑃()*%⋯𝑃(&𝑃(% and 𝑃) = 𝑃*)*%⋯𝑃)&𝑃)% can be used to do all the 
permutations ahead of time (the resulting matrix doesn’t require pivoting)
• 𝐴𝑐 = 𝑏 becomes (𝑃(𝐴𝑃)')(𝑃)𝑐) = 𝑃(𝑏 or 𝐴+𝑐+ = 𝑏+; then, 𝐴+ = 𝐿+𝑈+ can be 

computed without pivoting
• Subsequently, given any right hand side 𝑏, solve 𝐿+𝑈+𝑐+ = 𝑃(𝑏 to find 𝑐+ using 

forward/back substitution; then, 𝑐 = 𝑃)'𝑐,



Permuting before Elimination

• Assume 𝑖 > 𝑗,
𝑃('𝑀--𝑃(' = 𝐼./. − 𝑃('𝑚--�̂�-

'𝑃(' = 𝐼./. − ?𝑚--�̂�-' = @𝑀--
𝑃('𝑀--=	𝑃('𝑀--𝑃('𝑃(' = @𝑀--𝑃('

• Thus, for some suitable definition of the hat notation (there are multiple premutation 
operators to consider for each 𝑀--, except 𝑀#!%,#!%):

𝑀#!",#!"𝑃()*%⋯𝑀%%𝑃(&𝑀""𝑃(%𝐴 = 𝑀#!",#!"⋯ @𝑀%% @𝑀""𝑃(𝐴

• This shows that you can permute first and do elimination afterwards 



Sparsity

• Most large matrices (of interest) operate on variables that only interact with a sparse set of 
other variables
• This makes the matrix sparse (as opposed to dense), with most entries identically 0
• However, the inverse of a sparse matrix can contain an unwieldy amount of non-zero entries

• E.g. the 3D Poisson equation on a relatively small 100" Cartesian grid has an unknown for each 
of the 10, grid points
• For each unknown, the discretized Poisson equation depends on the unknown itself and its 6 

immediate Cartesian grid neighbors
• Thus, the size 10,𝑥10, matrix has only 7𝑥10, nonzero entries
• But, the inverse can have 10!# nonzero entries!



Computing the Inverse

• When 𝐴 is relatively small (and dense), computing 𝐴)!is fine

• Since 𝐴𝐴)! = 𝐼, the solution 𝑐& to 𝐴𝑐& = �̂�& is the k-th column of 𝐴)!

• First, compute 𝐴, = 𝐿,𝑈, as usual
• Then, solve 𝐴𝑐& = �̂�& once for each column (𝑛 times)


