Linear Systems

Motivation

- "Matrices are bad, vector spaces are good"
 - Don't think of matrices as a collection of numbers
 - Instead, think of the columns as vectors in a high dimensional space
- We don't have great intuition going from R^1 to R^2 to R^3 to R^n (for large n)
- Thinking about vectors in high dimensional spaces is a good way of gaining intuition about what's going on
- Linear algebra contains a lot of machinery for dealing with, discussing, and gaining intuition about vectors in high dimensional spaces
- We will cover linear algebra from the viewpoint of <u>understanding higher</u> <u>dimensional spaces</u>

System of Linear Equations

- System of equations: $3c_1 + 2c_2 = 6$ and $-4c_1 + c_2 = 7$
- Matrix form: $\begin{pmatrix} 3 & 2 \\ -4 & 1 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = \begin{pmatrix} 6 \\ 7 \end{pmatrix}$ or Ac = b
- Given A and b, determine c
- Theoretically, there is a <u>unique solution</u>, <u>no solution</u>, or <u>infinite solutions</u>
- Ideally, software would determine whether there was a unique solution, no solution, or infinite solutions; in the last case, it would list a parameterized family of solutions. Unfortunately, this is quite difficult to accomplish.

 Note: in this class, x is used for data, and c is used for unknowns (such as for the unknown parameters of a neural network)

"Zero"

- On the computer, defining "zero" is not straightforward
- When dealing with large numbers (e.g. Avogadro's number: 6.022e23) zero can be quite large
 - E.g. 6.022e23 1e7 = 6.022e23 in double precision, making 1e7 behave like "zero"
- When dealing with small numbers (e.g. 1e 23), "zero" is much smaller
 - In this case, on the order of 1e 39 in double precision
- Mixing big and small numbers often wreaks havoc on algorithms
- So, we typically <u>non-dimensionalize</u> and <u>normalize</u> to make equations O(1) as opposed to O("big") or O("small")

Row/Column Scaling

• Consider:

$$\begin{pmatrix} 3e6 & 2e10 \\ 1e-4 & 0 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = \begin{pmatrix} 5e10 \\ 6 \end{pmatrix}$$

• <u>Row Scaling</u> - divide first row by 1e10 to obtain:

$$\begin{pmatrix} 3e-4 & 2\\ 1e-4 & 0 \end{pmatrix} \begin{pmatrix} c_1\\ c_2 \end{pmatrix} = \begin{pmatrix} 5\\ 6 \end{pmatrix}$$

• <u>Column Scaling</u> - define a new variable $c_3 = (1e - 4)c_1$ to obtain: $\begin{pmatrix} 3 & 2 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} c_3 \\ c_2 \end{pmatrix} = \begin{pmatrix} 5 \\ 6 \end{pmatrix}$

• The final matrix is much easier to treat with finite precision arithmetic

• Solve for c_3 and c_2 ; then, $c_1 = (1e4)c_3$

Some Definitions...

- Elements of a matrix are often referred to by their row and column
- For example, a_{ik} is the element of matrix A in row i and column k
- Transpose swaps the row and column of every entry
- A^T moves element a_{ik} to row k column i (and vice versa)

• Non-square matrices change size: $\begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix}^T = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$

<u>Symmetric Matrices</u> have $A^T = A$ meaning that $a_{ik} = a_{ki}$ for all *i* and *k*

Square Matrices

- A size mxn matrix has m rows and n columns
- For now, let's just consider square nxn matrices
- We will consider non-square (rectangular) matrices with $m \neq n$ a bit later

Solvability

- <u>Singular</u> A is singular when it is not invertible (does not have an inverse)
- Various ways of showing this:
 - At least one column is linearly dependent on others (as discussed in Unit 1)
 - The <u>determinant</u> is zero: det A = 0
 - A has a nonempty <u>null space</u>, i.e. $\exists c \neq 0$ with Ac = 0
- Rank maximum number of linearly independent columns
- Singular matrices have rank < n (the # of columns), i.e. they are rank-deficient
 - So, they have either no solution or infinite solutions
- <u>Nonsingular</u> square matrices are invertible: $AA^{-1} = A^{-1}A = I$
 - So, Ac = b can be solved for c via $c = A^{-1}b$
- Note: we typically do not compute the inverse, but instead have a solution algorithm that exploits its existence

Matrices as Vectors (an example)

• Recall $Ac = \sum_k c_k a_k$ where the a_k are the columns of A

- Consider Ac = 0 or $\sum_k c_k a_k = 0$
- If one column is a linear combination of others, then the linear combination weights can be used to obtain Ac = 0 with c nonzero
 - This nonzero c is in the null space of A, and A is singular
- Conversely: If the only solution to Ac = 0 is c identically 0, then no column is linearly dependent on the others
 - Thus, A is nonsingular

Diagonal Matrices

- All off-diagonal entries are 0
- Equations are decoupled, and easy to solve

• E.g.
$$\begin{pmatrix} 5 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = \begin{pmatrix} 10 \\ -1 \end{pmatrix}$$
 has $5c_1 = 10$ and $2c_2 = -1$; so, $c_1 = 2$ and $c_2 = -.5$

- A zero on the diagonal indicates a singular system
 - Either no solution (e.g. $0c_1 = 10$) or infinite solutions (e.g. $0c_1 = 0$)
- The determinant of a diagonal matrix is obtained by multiplying all the diagonal elements together
 - Thus, a 0 on the diagonal implies a zero determinant and a singular matrix

Upper Triangular Matrices

- All entries below the diagonal are 0
- Nonsingular when the diagonal elements are all nonzero
 - Determinant is obtained by multiplying all the diagonal elements together
- Solve via <u>back substitution</u>

• E.g. consider
$$\begin{pmatrix} 2 & 3 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 5 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 10 \\ 10 \end{pmatrix}$$

- Start at the bottom: $5c_3 = 10$; so, $c_3 = 2$
- Move up one row: $c_2 c_3 = 10$; so, $c_2 2 = 10$ and $c_2 = 12$
- Move up one row: $2c_1 + 3c_2 + c_3 = 0$; so, $2c_1 + 36 + 2 = 0$ and $c_1 = -19$

Lower Triangular Matrices

- All entries above the diagonal are 0
- Nonsingular when the diagonal elements are all nonzero
 - Determinant is obtained by multiplying all the diagonal elements together
- Solve via forward substitution

• E.g. consider
$$\begin{pmatrix} 5 & 0 & 0 \\ -1 & 1 & 0 \\ 1 & 3 & 2 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix} = \begin{pmatrix} 10 \\ 10 \\ 0 \end{pmatrix}$$

- Start at the top: $5c_1 = 10$, so, $c_1 = 2$
- Move down one row: $-c_1 + c_2 = 10$; so, $-2 + c_2 = 10$ and $c_2 = 12$
- Move down one row: $c_1 + 3c_2 + 2c_3 = 0$; so, $2 + 36 + 2c_3 = 0$ and $c_3 = -19$

Elimination Matrix

• Given a column
$$\begin{pmatrix} a_{1k} \\ \vdots \\ a_{ik} \\ a_{i+1,k} \\ \vdots \\ a_{mk} \end{pmatrix}$$
, define $m_{ik} = \frac{1}{a_{ik}} \begin{pmatrix} 0 \\ \vdots \\ 0 \\ a_{i+1,k} \\ \vdots \\ a_{mk} \end{pmatrix}$
• Then, the size mxm elimination matrix $M_{ik} = I_{mxm} - m_{ik}\hat{e}_i^T$ subtracts multiples of row *i* from rows > *i* in order to create zeroes in column *k*
• Standard basis vector $\hat{e}_i = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$ has a 1 in the *i*-th row

Elimination Matrix

• Let
$$a_k = \begin{pmatrix} 2 \\ 4 \\ -8 \end{pmatrix}$$

•
$$M_{1k} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} - \frac{1}{2} \begin{pmatrix} 0 \\ 4 \\ -8 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 4 & 0 & 1 \end{pmatrix}$$
 and $M_{1k}a_k = \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix}$

•
$$M_{2k} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} - \frac{1}{4} \begin{pmatrix} 0 \\ 0 \\ -8 \end{pmatrix} (0 \quad 1 \quad 0) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 2 & 1 \end{pmatrix} \text{ and } M_{2k}a_k = \begin{pmatrix} 2 \\ 4 \\ 0 \end{pmatrix}$$

Elimination Matrix Inverse

- Inverse of an elimination matrix is $L_{ik} = M_{ik}^{-1} = I_{mxm} + m_{ik}\hat{e}_i^T$
- L_{ik} is a size mxm elimination matrix that adds multiples of row i to rows > i in order to reverse the effect of M_{ik}

•
$$L_{1k} = M_{1k}^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -4 & 0 & 1 \end{pmatrix}$$

• $L_{2k} = M_{2k}^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -2 & 1 \end{pmatrix}$

Combining Elimination Matrices

• $M_{i_1k_1}M_{i_2k_2} = I - m_{i_1k_1}\hat{e}_{i_1}^T - m_{i_2k_2}\hat{e}_{i_2}^T$ when $i_1 < i_2$ (but not when $i_1 > i_2$)

$$M_{1k}M_{2k} = \begin{pmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 4 & 2 & 1 \end{pmatrix}, \text{ but } M_{2k}M_{1k} = \begin{pmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 2 & 1 \end{pmatrix}$$

• $L_{i_1k_1}L_{i_2k_2} = I + m_{i_1k_1}\hat{e}_{i_1}^T + m_{i_2k_2}\hat{e}_{i_2}^T$ when $i_1 < i_2$ (but not when $i_1 > i_2$)

$$L_{1k}L_{2k} = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -4 & -2 & 1 \end{pmatrix}, \text{ but } L_{2k}L_{1k} = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -8 & -2 & 1 \end{pmatrix}$$

Gaussian Elimination

• Consider
$$\begin{pmatrix} 2 & 4 & -2 \\ 4 & 9 & -3 \\ -2 & -3 & 7 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix} = \begin{pmatrix} 2 \\ 8 \\ 10 \end{pmatrix}$$

•
$$M_{11}A = \begin{pmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 2 & 4 & -2 \\ 4 & 9 & -3 \\ -2 & -3 & 7 \end{pmatrix} = \begin{pmatrix} 2 & 4 & -2 \\ 0 & 1 & 1 \\ 0 & 1 & 5 \end{pmatrix}$$
 and $M_{11}b = \begin{pmatrix} 2 \\ 4 \\ 12 \end{pmatrix}$

• $M_{22}M_{11}A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & 1 \end{pmatrix} \begin{pmatrix} 2 & 4 & -2 \\ 0 & 1 & 1 \\ 0 & 1 & 5 \end{pmatrix} = \begin{pmatrix} 2 & 4 & -2 \\ 0 & 1 & 1 \\ 0 & 0 & 4 \end{pmatrix} \text{ and } M_{22}M_{11}b = \begin{pmatrix} 2 \\ 4 \\ 8 \end{pmatrix}$

• Then, solve the upper triangular $\begin{pmatrix} 2 & 4 & -2 \\ 0 & 1 & 1 \\ 0 & 0 & 4 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix} = \begin{pmatrix} 2 \\ 4 \\ 8 \end{pmatrix}$ via back substitution

LU Factorization

- Gaussian Elimination gives an upper triangular $U = M_{n-1,n-1} \cdots M_{22} M_{11} A$
- Using inverses, $A = L_{11}L_{22} \cdots L_{n-1,n-1}M_{n-1,n-1} \cdots M_{22}M_{11}A = L_{11}L_{22} \cdots L_{n-1,n-1}U$
- Since $L_{i_1i_1}L_{i_2i_2} = I + m_{i_1i_1}\hat{e}_{i_1}^T + m_{i_2i_2}\hat{e}_{i_2}^T$ when $i_1 < i_2$, $L = L_{11}L_{22} \cdots L_{n-1,n-1}$ is lower triangular and A = LU

• Here
$$L = L_{11}L_{22} = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -1 & 1 & 1 \end{pmatrix}$$

$$A = \begin{pmatrix} 2 & 4 & -2 \\ 4 & 9 & -3 \\ -2 & -3 & 7 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 2 & 4 & -2 \\ 0 & 1 & 1 \\ 0 & 0 & 4 \end{pmatrix} = LU$$

LU Factorization

- Factoring A = LU helps to solve Ac = b
- In order to solve LUc = b, define an auxiliary variable $\hat{c} = Uc$
- First, solve $L\hat{c} = b$ for \hat{c} via forward substitution
- Second, solve $Uc = \hat{c}$ for c via back substitution
- Note: the LU factorization is only computed once, and then can be used afterwards on many right hand side vectors (on many *b* vectors)

Pivoting

• $A = \begin{pmatrix} 0 & 4 \\ 4 & 9 \end{pmatrix}$ requires division by zero in order to create M_{11}

 <u>(Partial) Pivoting</u> - swap rows to use the largest (magnitude) element in the column under consideration

- Don't forget to swap the right hand side b too
- Full Pivoting swap rows and columns to use the largest possible element
 - Don't forget to change the order of the unknowns c
- When considering column k, can only swap with rows/columns $\geq k$

Permutation Matrix

- Constructed by switching the 2 rows of *I* that one wants swapped • E.g. $P_{13} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$, and $P_{13}A$ swaps the first and third rows of *A*
- Permutation matrices are their own inverses (swapping again restores the rows)
- Switching rows i_1 and i_2 moves a 1 from $a_{i_1i_1}$ to $a_{i_2i_1}$ as well as from $a_{i_2i_2}$ to $a_{i_1i_2}$, preserving symmetry (i.e. $P_{i_1i_2}^T = P_{i_1i_2}$)
- To swap the first and third unknowns: $Ac = AP_{13}P_{13}c = (AP_{13})(P_{13}c)$ where $P_{13}c$ swaps the unknowns and AP_{13} swaps the columns (to see this, consider $(AP_{13})^{TT} = (P_{13}A^T)^T$ which swaps the rows of A^T)

Full Pivoting

- Let P_{r_i} be the permutation matrix that (potentially) switches row *i* with a row > *i*
- Let P_{c_k} be the permutation matrix that (potentially) switches column k with a col > k

• Then full pivoting can be written as: $(M_{n-1,n-1}P_{r_{n-1}}\cdots M_{22}P_{r_2}M_{11}P_{r_1}AP_{c_1}P_{c_2}\cdots P_{c_{n-1}})(P_{c_{n-1}}\cdots P_{c_2}P_{c_1}c)$

- Once known, $P_r = P_{r_{n-1}} \cdots P_{r_2} P_{r_1}$ and $P_c = P_{c_{n-1}} \cdots P_{c_2} P_{c_1}$ can be used to do all the permutations ahead of time (the resulting matrix doesn't require pivoting)
- Ac = b becomes $(P_r A P_c^T)(P_c c) = P_r b$ or $A_P c_P = b_P$; then, $A_P = L_P U_P$ can be computed without pivoting
- Subsequently, given any right hand side b, solve $L_P U_P c_P = P_r b$ to find c_P using forward/back substitution; then, $c = P_c^T c_p$

Permuting before Elimination

• Assume i > j,

$$P_{r_i}M_{jj}P_{r_i} = I_{mxm} - P_{r_i}m_{jj}\hat{e}_j^T P_{r_i} = I_{mxm} - \hat{m}_{jj}\hat{e}_j^T = \hat{M}_{jj}$$
$$P_{r_i}M_{jj} = P_{r_i}M_{jj}P_{r_i}P_{r_i} = \hat{M}_{jj}P_{r_i}$$

• Thus, for some suitable definition of the hat notation (there are multiple premutation operators to consider for each M_{jj} , except $M_{n-2,n-2}$):

$$M_{n-1,n-1}P_{r_{n-1}}\cdots M_{22}P_{r_2}M_{11}P_{r_1}A = M_{n-1,n-1}\cdots \widehat{M}_{22}\widehat{M}_{11}P_{r}A$$

• This shows that you can permute first and do elimination afterwards

Sparsity

- Most large matrices (of interest) operate on variables that only interact with a sparse set of other variables
- This makes the matrix sparse (as opposed to dense), with most entries identically 0
- However, the inverse of a sparse matrix can contain an unwieldy amount of non-zero entries
- E.g. the 3D Poisson equation on a relatively small 100³ Cartesian grid has an unknown for each of the 10⁶ grid points
- For each unknown, the discretized Poisson equation depends on the unknown itself and its 6 immediate Cartesian grid neighbors
- Thus, the size $10^6 x 10^6$ matrix has only $7x 10^6$ nonzero entries
- But, the inverse can have 10¹² nonzero entries!

Computing the Inverse

- When A is relatively small (and dense), computing A^{-1} is fine
- Since $AA^{-1} = I$, the solution c_k to $Ac_k = \hat{e}_k$ is the k-th column of A^{-1}
- First, compute $A_P = L_P U_P$ as usual
- Then, solve $Ac_k = \hat{e}_k$ once for each column (*n* times)