
Understanding Matrices



Eigensystems

• Eigenvectors - special directions 𝑣! in which a matrix only applies scaling
• Eigenvalues - the amount 𝜆! of that scaling
• Right Eigenvectors (or just eigenvectors) satisfy 𝐴𝑣! = 𝜆!𝑣!
• Eigenvectors represent directions, so 𝐴(𝛼𝑣!) = 𝜆! 𝛼𝑣! is also true for all 𝛼

• Left Eigenvectors satisfy 𝑢!"𝐴 = 𝜆!𝑢!" (or 𝐴"𝑢! = 𝜆!𝑢!)
• Diagonal matrices have eigenvalues on the diagonal, and eigenvectors �̂�!
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• Upper/lower triangular matrices also have eigenvalues on the diagonal
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Complex Numbers

• Complex numbers may appear in both eigenvalues and eigenvectors
0 1
−1 0

1
𝑖 = 𝑖 1

𝑖
• Recall: complex conjugate: 𝑎 + 𝑏𝑖 ∗ = 𝑎 − 𝑏𝑖
• Hermitian Matrix: 𝐴∗" = 𝐴 (often, 𝐴∗" is written as 𝐴$)
• 𝐴𝑣 = 𝜆𝑣 implies 𝐴𝑣 ∗" = 𝜆𝑣 ∗" or 𝑣∗"𝐴 = 𝜆∗𝑣∗"
• Using this,  𝐴𝑣 = 𝜆𝑣 implies 𝑣∗"𝐴𝑣 = 𝑣∗"𝜆𝑣 or 𝜆∗𝑣∗"𝑣 = 𝜆𝑣∗"𝑣 or 𝜆∗ = 𝜆
• Thus, Hermitian matrices have 𝜆 ∈ 𝑅 (no complex eigenvalues)

• Symmetric real-valued matrices have real-valued eigenvalues/eigenvectors 
• However, complex eigenvectors work too, e.g. 𝐴(𝛼𝑣!) = 𝜆! 𝛼𝑣! with 𝛼

complex



Vector Deformation

• Let 𝑐 = ∑! 𝛼!𝑣!, so that 𝐴𝑐 = ∑! 𝛼!𝐴𝑣! = ∑! 𝛼!𝜆! 𝑣!
• 𝐴 tilts 𝑐 away from directions with smaller eigenvalues and towards directions 

with larger eigenvalues

• Large 𝜆!  stretch in their associated 𝑣!  
directions

• Small 𝜆!  squish in their associated 𝑣!  
directions

• Negative 𝜆!  flip the sign (i.e. direction) in 
their associated 𝑣!  directions 



Spatial Deformation

• Consider every point on the unit circle (green) as a vector 𝑐 = ∑! 𝛼!𝑣! , and 
remap each point via 𝐴𝑐 = ∑! 𝛼!𝜆! 𝑣!

• The remapped shape (blue) is more 
elliptical than the original circle (green)

• The circle is stretched/compressed along 
the (red) axis with the larger/smaller 
eigenvalue, respectively 

• The larger the ratio of eigenvalues, the 
more elliptical the new shape becomes

• This is true for all circles (and thus all points 
in the plane)



Solving Linear Systems

• Perturb the right hand side from 𝑏 to 8𝑏,  and solve 𝐴�̂� = 8𝑏 to find �̂�
• Note: 𝑐 and �̂� are more separated than 𝑏 and 8𝑏, i.e. the solution is perturbed 

more than the right hand side is

• Small changes in 𝑏	lead to larger changes in 
the solution

• Small algorithmic errors are also amplified: 
they change 𝐴%&𝑏 to :𝐴%&𝑏, which is similar 
to changing 𝐴%&𝑏 to 𝐴%& 8𝑏

• The amount of amplification is proportional 
to the ratio of the eigenvalues



Preconditioning
• Suppose 𝐴 has large eigenvalue ratios, making 𝐴𝑐 = 𝑏 difficult to solve
• Let :𝐴%& ≈ 𝐴%& be an approximate guess for the inverse
• Transform 𝐴𝑐 = 𝑏 into :𝐴%&𝐴𝑐 = :𝐴%&𝑏 or :𝐼𝑐 = =𝑏
• Typically, a bit more involved than this (but conceptually similar)

• :𝐼 is not the identity, so more computation is required to find 𝑐
• But, :𝐼 has similar magnitude eigenvalues (clusters work too), making :𝐼𝑐 = =𝑏 far 

easier to solve than a poorly conditioned 𝐴𝑐 = 𝑏

Preconditioning works GREAT!

• It is best to re-scale stretched ellipsoids along eigenvector axes, but scaling along 
coordinate axes (diagonal/Jacobi preconditioning) can work well too



Rectangular Matrices (Rank)

• An 𝑚𝑥𝑛 rectangular matrix has 𝑚 rows and 𝑛 columns
• (Note: these comments also hold for square matrices with 𝑚 = 𝑛)

• The columns span a space, and the unknowns are weights on each column (recall 𝐴𝑐 = ∑! 𝑐!𝑎! )
• A matrix with 𝑛 columns has maximum rank 𝑛
• The actual rank depends on how many of the columns are linearly independent from one another

• Each column has length 𝑚 (the number of rows)
• Since the columns live in an 𝑚 dimensional space, they can at best span that whole space
• Thus, there is a maximum of 𝑚 independent columns (that could exist)

• Overall, a matrix at most has rank equal to the minimum of 𝑚 and 𝑛
• Both considerations are based on looking at the columns (which are scaled by the unknowns)



Rows vs. Columns

• One can find discussions on rows, row spaces, etc. that are used for various 
purposes
• Although these are fine discussions about matrices/mathematics, they are 

unnecessary for an intuitive understanding of high dimensional vector spaces (so, 
we’ll ignore them)

• The number of columns is equal to the number of variables, which depends on 
the parameters of the problem
• E.g. the unknown parameters that govern a neural network architecture

• The number of rows depends on the amount of data used, and adding/removing 
data does not intrinsically affect the nature of the problem
• E. g. it does not change the network architecture, but merely perturbs the ascertained 

values of the unknown parameters



Singular Value Decomposition (SVD)

• Factorization of any size 𝑚𝑥𝑛 matrix: 𝐴 = 𝑈𝛴𝑉"

• 𝛴 is 𝑚𝑥𝑛 diagonal with non-negative diagonal entries (called singular values) 
• 𝑈 is 𝑚𝑥𝑚 orthogonal, 𝑉 is 𝑛𝑥𝑛 orthogonal (their columns are called singular 

vectors)
• Orthogonal matrices have orthonormal columns (an orthonormal basis), so their transpose 

is their inverse. They preserve inner products, and thus are rotations, reflections, and 
combinations thereof
• If A has complex entries, then 𝑈 and 𝑉 are unitary (conjugate transpose is their inverse)

• Introduced and rediscovered many times: Beltrami 1873, Jordan 1875, Sylvester 1889, Autonne
1913, Eckart and Young 1936. Pearson introduced principal component analysis (PCA) in 1901, 
which uses SVD. Numerical methods by Chan, Businger, Golub, Kahan, etc.



(Rectangular) Diagonal Matrices

• All off-diagonal entries are 0 
• Diagonal entries are 𝑎!! , and off diagonal entries are 𝑎!" with 𝑘 ≠ 𝑖

• E.g.
5 0
0 2
0 0

𝑐&
𝑐' =

10
−1
𝛼

has 5𝑐& = 10 and 2𝑐' = −1, so 𝑐& = 2 and 𝑐' = −.5

• Note that 𝛼 ≠ 0 imposes a “no solution” condition (even though 𝑐# and 𝑐$ are well-
specified)

• E.g. 5 0 0
0 2 0

𝑐&
𝑐'
𝑐(

= 10
−1 has 5𝑐& = 10 and 2𝑐' = −1, so 𝑐& = 2 and 𝑐' =

− .5
• Note that there are “infinite solutions” for 𝑐% (even though 𝑐# and 𝑐$ are well-specified)

• A zero on the diagonal indicates a singular system, which has either no solution 
(e.g. 0𝑐& = 10) or infinite solutions (e.g. 0𝑐& = 0)



Singular Value Decomposition (SVD)

• 𝐴!𝐴 = 𝑉𝛴!𝑈!𝑈𝛴𝑉! = 𝑉 𝛴!𝛴 𝑉!, so (𝐴!𝐴)𝑣 = 𝜆𝑣 gives 𝛴!𝛴 (𝑉!𝑣) = 𝜆(𝑉!𝑣)
• 𝛴!𝛴 is n𝑥𝑛 diagonal with eigenvectors �̂�", so �̂�" = 𝑉!𝑣 and 𝑣 = 𝑉�̂�"
• That is, the columns of 𝑉 are the eigenvectors of 𝐴!𝐴

• 𝐴𝐴! = 𝑈𝛴𝑉!𝑉𝛴!𝑈! = 𝑈 𝛴𝛴! 𝑈!, so (𝐴𝐴!)𝑣 = 𝜆𝑣 gives 𝛴𝛴! (𝑈!𝑣) = 𝜆(𝑈!𝑣)
• 𝛴𝛴! is m𝑥𝑚 diagonal with eigenvectors �̂�", so �̂�" = 𝑈!𝑣 and 𝑣 = 𝑈�̂�"
• That is, the columns of 𝑈 are the eigenvectors of 𝐴𝐴!

• When 𝑚 ≠ 𝑛, either 𝛴!𝛴 or 𝛴𝛴! is larger and contains extra zeros on the diagonal 
• Their other diagonal entries are the squares of the singular values
• That is, the singular values are the (non-negative) square roots of the non-extra eigenvalues of 𝐴!𝐴 and 𝐴𝐴!

• Both 𝐴!𝐴 and 𝐴𝐴! are symmetric positive semi-definite, and thus easy to work with 
• E.g. symmetry means their eigensystem (and thus the SVD) has no complex numbers when 𝐴 doesn’t



Example (Tall Matrix)

• Consider size 4𝑥3 matrix	𝐴 =
1 2 3
4
7

5
8

6
9

10 11 12

• Label the columns 𝑎# =
1
4
7
10

, 𝑎$ =
2
5
8
11

, 𝑎% =
3
6
9
12

• Since 𝑎# and 𝑎$ point in different directions, 𝐴 is at least rank 2  
• Since 𝑎% = 2𝑎$ − 𝑎#, the third column is in the span of the first two columns 
• Thus, 𝐴 is only rank 2 (not rank 3)



Example (SVD)

𝐴 =
1 2 3
4
7

5
8

6
9

10 11 12
=

.141 .825 −.420 −.351

.344

.547
.426
.028

.298 .782
.644 −.509

.750 −.371 −.542 .079

25.5 0 0
0
0

1.29
0

0
0

0 0 0

.504 .574 .644
−.761 −.057 .646
.408 −.816 .408

• Singular values are 25.5, 1.29, and 0
• Singular value of 0 indicates that the matrix is rank deficient
• The rank of a matrix is equal to its number of nonzero singular values



Derivation from 𝐴!𝐴 and 𝐴𝐴!

𝐴 =
1 2 3
4
7

5
8

6
9

10 11 12
=

.141 .825 −.420 −.351

.344

.547
.426
.028

.298 .782
.644 −.509

.750 −.371 −.542 .079

25.5 0 0
0
0

1.29
0

0
0

0 0 0

.504 .574 .644
−.761 −.057 .646
.408 −.816 .408

• 𝐴&𝐴 is size 3𝑥3 and has 3 eigenvectors (seen in 𝑉)
• The square roots of the 3 eigenvalues of 𝐴&𝐴 are seen in 𝛴 (color coded to the eigenvectors)
• 𝐴𝐴& is size 4𝑥4 and has 4 eigenvectors (seen in 𝑈)
• The square roots of 3 of the eigenvalues of 𝐴𝐴& are seen in 𝛴

• The	4th eigenvalue	of	𝐴𝐴! is an extra eigenvalue of 0



Understanding 𝐴𝑐

𝐴 =
1 2 3
4
7

5
8

6
9

10 11 12
=

.141 .825 −.420 −.351

.344

.547
.426
.028

.298 .782
.644 −.509

.750 −.371 −.542 .079

25.5 0 0
0
0

1.29
0

0
0

0 0 0

.504 .574 .644
−.761 −.057 .646
.408 −.816 .408

• 𝐴 maps from 𝑅! to 𝑅"
• 𝐴𝑐 first projects 𝑐 ∈ 𝑅! onto the 3 basis vectors in 𝑉
• Then, the associated singular values (diagonally) scale the results
• Lastly, those scaled results are used as weights on the basis vectors in 𝑈



Understanding 𝐴𝑐

𝐴𝑐 =
.141 .825 −.420 −.351
.344
.547

.426

.028
.298 .782
.644 −.509

.750 −.371 −.542 .079

25.5 0 0
0
0

1.29
0

0
0

0 0 0

.504 .574 .644
−.761 −.057 .646
.408 −.816 .408

𝑐"
𝑐#
𝑐$

=
.141 .825 −.420 −.351
.344
.547

.426

.028
.298 .782
.644 −.509

.750 −.371 −.542 .079

25.5 0 0
0
0

1.29
0

0
0

0 0 0

𝑣"%𝑐
𝑣#%𝑐
𝑣$%𝑐

=
.141 .825 −.420 −.351
.344
.547

.426

.028
.298 .782
.644 −.509

.750 −.371 −.542 .079

𝜎"𝑣"%𝑐
𝜎#𝑣#%𝑐
𝜎$𝑣$%𝑐
0

= 𝑢"𝜎"𝑣"%𝑐 + 𝑢#𝜎#𝑣#%𝑐 + 𝑢$𝜎$𝑣$%𝑐 + 𝑢&0
• 𝐴𝑐 projects 𝑐 onto the basis vectors in 𝑉, scales by the associated singular values, and uses those results 

as weights on the basis vectors in 𝑈



Extra Dimensions

𝐴 =
1 2 3
4
7

5
8

6
9

10 11 12
=

.141 .825 −.420 −.351

.344

.547
.426
.028

.298 .782
.644 −.509

.750 −.371 −.542 .079

25.5 0 0
0
0

1.29
0

0
0

0 0 0

.504 .574 .644
−.761 −.057 .646
.408 −.816 .408

• The 3D space of vector inputs can only span a 3D subspace of 𝑅"
• The last (green) column of 𝑈 represents the unreachable dimension, orthogonal to the 

range of 𝐴, and is always multiplied by 0 
• One can delete this column and the associated portion of Σ (and still obtain a valid 

factorization)



Zero Singular Values

𝐴 =
1 2 3
4
7

5
8

6
9

10 11 12
=

.141 .825 −.420 −.351

.344

.547
.426
.028

.298 .782
.644 −.509

.750 −.371 −.542 .079

25.5 0 0
0
0

1.29
0

0
0

0 0 0

.504 .574 .644
−.761 −.057 .646
.408 −.816 .408

• The 3rd singular value is 0, so 𝐴 has a 1D null space that reduces the 3D input vectors to 
only 2 dimensions
• The associated (pink) terms make no contribution to the final result, and can also be 

deleted (still obtaining a valid factorization)
• The first 2 columns of 𝑈 span the 2D subset of 𝑅" that comprises the range of 𝐴



Approximating 𝐴

𝐴 =
1 2 3
4
7

5
8

6
9

10 11 12
≈

.141 .825 −.420 −.351

.344

.547
.426
.028

.298 .782
.644 −.509

.750 −.371 −.542 .079

25.5 0 0
0
0

1.29
0

0
0

0 0 0

.504 .574 .644
−.761 −.057 .646
.408 −.816 .408

• The first singular value is much bigger than the second, and so represents the vast 
majority of what 𝐴 does (note, the vectors in 𝑈 and 𝑉 are unit length)
• Thus, one could approximate 𝐴 quite well by only using the terms associated with the 

largest singular value
• This is not a valid factorization, but an approximation (and the idea behind PCA)



Summary

• The columns of 𝑉 that do not correspond to “nonzero” singular values form an 
orthonormal basis for the null space of 𝐴
• The remaining columns of 𝑉 form an orthonormal basis for the space perpendicular to 

the null space of 𝐴 (parameterizing meaningful inputs)

• The columns of 𝑈 corresponding to “nonzero” singular values form an orthonormal 
basis for the range of 𝐴
• The remaining columns of 𝑈 form an orthonormal basis for the (unattainable) space 

perpendicular to the range of 𝐴

• One can drop the columns of 𝑈 and 𝑉 that do not correspond to “nonzero” singular 
values and still obtain a valid factorization of 𝐴
• One can drop the columns of 𝑈 and 𝑉 that correspond to “smaller” singular values and 

still obtain a reasonable approximation of 𝐴



Example (Wide Matrix)

𝐴 =
1 4 7 10
2 5 8 11
3 6 9 12

=

.504 −.761 .408

.574 −.057 −.816

.644 .646 .408

25.5 0 0 0
0 1.29 0 0
0 0 0 0

.141 .344 .547 .750

.825
−.420

.426

.298
.028 −.371
.644 −.542

−.351 .782 −.509 .079

• 𝐴 maps from 𝑅G to 𝑅( and so has at least a 1D null space (green)
• The 3rd singular value is 0, and the associated (pink) terms make no contribution 

to the final result (so the null space is 2D)



Example (Wide Matrix)

𝐴 =
1 4 7 10
2 5 8 11
3 6 9 12

=

.504 −.761 .408

.574 −.057 −.816

.644 .646 .408

25.5 0 0 0
0 1.29 0 0
0 0 0 0

.141 .344 .547 .750

.825
−.420

.426

.298
.028 −.371
.644 −.542

−.351 .782 −.509 .079

• Only a 2D subspace of 𝑅G matters, with the rest of 𝑅G in the null space of 𝐴
• Only a 2D subspace of 𝑅( is in the range of 𝐴



Notes

• The SVD is often unwieldy for computational purposes
• However, replacing matrices by their SVD can be quite useful/enlightening for 

theoretical pursuits
• Moreover, its theoretical underpinnings are often used to devise computational 

algorithms

• The SVD is unique under certain assumptions, such as all 𝜎! ≥ 0 and in 
descending order
• However, one can make both a 𝜎! and its associated column in 𝑈 negative for a 

”polar SVD” (see e.g. ”Invertible Finite Elements For Robust Simulation of Large 
Deformation”, Irving et al. 2004)



SVD Construction (an important detail)

• Let A = 1 0
0 −1 so that 𝐴"𝐴 = 𝐴𝐴" = 𝐼, and thus 𝑈 = 𝑉 = Σ = 𝐼

• But 𝐴 ≠ 𝑈Σ𝑉" = 𝐼 What’s wrong?
• Given a column vector 𝑣! of 𝑉,	𝐴𝑣! = 𝑈𝛴𝑉"𝑣! = 𝑈𝛴�̂�! = 𝑈𝜎!�̂�! = 𝜎!𝑢! where 
𝑢! is the corresponding column of 𝑈
• 𝐴𝑣& =

1 0
0 −1

1
0 = 1

0 = 𝑢& but 𝐴𝑣' =
1 0
0 −1

0
1 = 0

−1 ≠ 0
1 = 𝑢'

• Since 𝑈 and 𝑉 are orthonormal, their columns are unit length
• However, there are still two choices for the direction of each column

• Multiplying 𝑢' by −1 to get 𝑢' =
0
−1 makes 𝑈 = 𝐴,	and	thus 𝐴 = 𝑈Σ𝑉" as 

desired



SVD Construction (an important detail)

• An orthogonal matrix has determinant equal to ±1, where −1 indicates a reflection of 
the coordinate system
• If det 𝑉 = −1, flip the direction of any column to make det 𝑉 = 1 (so 𝑉 does not 

contain a reflection)
• Then, for each 𝑣#, compare 𝐴𝑣# to 𝜎#𝑢# and flip the direction of 𝑢# when necessary in 

order to make 𝐴𝑣# = 𝜎#𝑢#

• det𝑈 = ± 1 and may contain a reflection
• When det𝑈 = −1, one can flip the sign of the smallest singular value in 𝛴 to be 

negative, whilst also flipping the direction of the corresponding column in 𝑈 so that 
det𝑈 = 1
• This embeds the reflection into 𝛴 and is called the polar-SVD (Irving et al. 2004)



Solving Linear Systems

• 𝐴𝑐 = 𝑏 becomes 𝑈𝛴𝑉"𝑐 = 𝑏 or 𝛴(𝑉"𝑐) = (𝑈"𝑏) or 𝛴�̂� = 8𝑏
• The unknowns 𝑐 are remapped into the space spanned by 𝑉, and the right hand

side 𝑏 is remapped into the space spanned by 𝑈
• Every matrix is a diagonal matrix, when viewed in the right space
• Solve the diagonal system 𝛴�̂� = 8𝑏 by dividing the entries of 8𝑏 by the singular 

values 𝜎!; then, 𝑐 = 𝑉�̂�
• The SVD transforms the problem into an inherently diagonal space with 

eigenvectors along the coordinate axes
• Circles becoming ellipses (discussed earlier) is still problematic
• Eccentricity is caused by ratios of singular values (since 𝑈 and 𝑉 are orthogonal matrices)



Condition Number

• The condition number of 𝐴 is  H!"#
H!$%

and measures closeness to being singular

• For a square matrix, it measures the difficulty in solving 𝐴𝑐 = 𝑏
• For a rectangular (and square) matrix, it measures how close the columns are to 

being linearly dependent
• For a wide (rectangular) matrix, it ignores the extra columns that are guaranteed to be 

linearly dependent (which is fine, because the associated variables lack any data)

• The condition number does not depend on the right hand side
• The condition number is always bigger than 1, and approaches ∞ for nearly 

singular matrices
• Singular matrices have condition number equal to ∞, since 𝜎IJK = 0



Thinking Carefully about Singular Matrices

• Diagonalize 𝐴𝑐 = 𝑏 to 𝛴(𝑉!𝑐) = (𝑈!𝑏), e.g.
𝜎# 0
0 𝜎$

�̂�#
�̂�$

=
O𝑏#
O𝑏$

with  �̂�# =
%&!
'!

, �̂�$ =
%&"
'"

• Suppose 𝜎# ≠ 0 and 𝜎$ = 0; then, there is no unique solution:
• When O𝑏$ = 0, there are infinite solutions for �̂�$ (but �̂�# is still uniquely determined)
• When O𝑏$ ≠ 0, there is no solution for �̂�$, and 𝑏 is not in the range of 𝐴 (but �̂�# is still uniquely determined)

• Consider: 
𝜎# 0
0 𝜎$
0 0

�̂�#
�̂�$

=
O𝑏#
O𝑏$
O𝑏(

with �̂�# =
%&!
'!

, �̂�$ =
%&"
'"

• When O𝑏( = 0, the last row adds no new information (one has extra redundant data)
• When O𝑏( ≠ 0, the last row is false and there is no solution (but �̂�#and �̂�$ are still uniquely determined)

• Consider: 
𝜎# 0 0
0 𝜎$ 0

�̂�#
�̂�$
�̂�(

=
O𝑏#
O𝑏$

with �̂�# =
%&!
'!

, �̂�$ =
%&"
'"

• Infinite solutions work for �̂�( (but �̂�#and �̂�$ are still uniquely determined)



Understanding Variables

• Consider any column 𝑘 of 𝛴
• When 𝜎# ≠ 0, a unique value can be determined for �̂�#
• When 𝜎# = 0 or there is no 𝜎#, then there is no information in the data for �̂�#

• This does not mean that other parameters cannot be adequately determined!

• Consider a row 𝑖 of 𝛴 that is identically zero
• When C𝑏$ = 0, this row indicates that there is extra redundant data
• When C𝑏$ ≠ 0, this row indicates that there is conflicting information in the data
• Conflicting information doesn’t necessarily imply that all is lost, i.e. “no solution”; 

rather, it might merely mean that the data contains a bit of noise
• Regardless, in spite of any conflicting information, the determinable �̂�# represent the 

“best” that one can do



Norms

• Common norms:     𝑐 & = ∑! 𝑐! ,      𝑐 ' = ∑! 𝑐!',      𝑐 P = max
!

𝑐!

• ”All norms are interchangeable” is a theoretically valid statement (only)
• In practice, the “worst case scenario” (𝐿P) and the “average” (𝐿&, 𝐿', etc.) are not 

interchangeable

• E.g. (100 people * 98.6Q + 1 person * 105Q)/(101 people) = 98.66Q

• Their average temperature is 98.66Q, but everything is not “ok”



Matrix Norms

• Define the norm of a matrix 𝐴 = max
RST

UR
R

, so:
• 𝐴 & is the maximum absolute value column sum
• 𝐴 P is the maximum absolute value row sum
• 𝐴 ' is the square root of the maximum eigenvalue of 𝐴"𝐴 , i.e. the 

maximum singular value of 𝐴

• The condition number for solving (square matrix) 𝐴𝑐 = 𝑏 is 𝐴 ' 𝐴%& '

• Since 𝐴%& = 𝑉Σ%&𝑈" where Σ%& has diagonal entries &
H&

, 𝐴%& ' =
&

H!$%

• Thus, 𝐴 ' 𝐴%& ' =
H!"#
H!$%


