Special Matrices

(Strict) Diagonal Dominance

- The magnitude of each diagonal element is (either):
- strictly larger than the sum of the magnitudes of all the other elements in its row
- strictly larger than the sum of the magnitudes of all the other elements in its column
- One may row/column scale and permute rows/columns to achieve diagonal dominance (since it's just a rewriting of the equations)
- Recall: choosing the form of the equations wisely is important
- E.g. consider $\left(\begin{array}{cc}3 & -2 \\ 5 & 1\end{array}\right)\binom{c_{1}}{c_{2}}=\binom{9}{4}$
- Switch rows $\left(\begin{array}{cc}5 & 1 \\ 3 & -2\end{array}\right)\binom{c_{1}}{c_{2}}=\binom{4}{9}$ and column scale $\left(\begin{array}{cc}5 & -2 \\ 3 & 4\end{array}\right)\binom{c_{1}}{-.5 c_{2}}=\binom{4}{9}$

(Strict) Diagonal Dominance

- Strictly diagonally dominant (square) matrices are guaranteed to be non-singular
- Since $\operatorname{det}(A)=\operatorname{det}\left(A^{T}\right)$, either row or column diagonal dominance is enough
- Column diagonal dominance guarantees that pivoting is not required during $L U$ factorization
- However, pivoting still improves robustness
- E.g. consider $\left(\begin{array}{cc}4 & 3 \\ -2 & 50\end{array}\right)$ where 50 is more desirable than 4 for a_{11}

Recall: SVD Construction (Unit 3)

- Let $\mathrm{A}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$ so that $A^{T} A=A A^{T}=I$, and thus $U=V=\Sigma=I$
- But $A \neq U \Sigma V^{T}=I$ What's wrong?
- Given a column vector v_{k} of $V, A v_{k}=U \Sigma V^{T} v_{k}=U \Sigma \hat{e}_{k}=U \sigma_{k} \hat{e}_{k}=\sigma_{k} u_{k}$ where u_{k} is the corresponding column of U
- $A v_{1}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)\binom{1}{0}=\binom{1}{0}=u_{1}$ but $A v_{2}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)\binom{0}{1}=\binom{0}{-1} \neq\binom{ 0}{1}=u_{2}$
- Since U and V are orthonormal, their columns are unit length
- However, there are still two choices for the direction of each column
- Multiplying u_{2} by -1 to get $u_{2}=\binom{0}{-1}$ makes $U=A$, and thus $A=U \Sigma V^{T}$ as desired

Symmetric Matrices

- Since $A^{T} A=A A^{T}=A^{2}$, both the columns of U and the columns of V are eigenvectors of A^{2}
- They have identical (but potentially opposite) directions: $u_{k}= \pm v_{k}$
- Thus, $A v_{k}=\sigma_{k} u_{k}$ implies $A v_{k}= \pm \sigma_{k} v_{k}$
- That is, the v_{k} (and u_{k}) are eigenvectors of A with eigenvalues $\pm \sigma_{k}$
- Similar to the polar SVD, can pull negative signs out of the columns of U into the σ_{k} to obtain $U=V$ and $A=V \Lambda V^{T}$ as a modified SVD
- $A=V \Lambda V^{T}$ implies $A V=V \Lambda$ which is the matrix form of the eigensystem of A
- Here, Λ contains the positive and negative eigenvalues of A

Making/Breaking Symmetry

- Row/column scaling can make or break symmetry:
- Row scaling $\left(\begin{array}{cc}5 & 3 \\ 3 & -4\end{array}\right)$ by -2 gives a non-symmetric $\left(\begin{array}{cc}5 & 3 \\ -6 & 8\end{array}\right)$
- Additional column scaling by -2 gives a symmetric $\left(\begin{array}{cc}5 & -6 \\ -6 & -16\end{array}\right)$
- Scaling the same row/column together in the same way preserves symmetry
- Important: a nonsymmetric matrix might be inherently symmetric when properly rescaled/rearranged

Symmetric Approximation

- A non-symmetric A can be approximated by a symmetric $\hat{A}=\frac{1}{2}\left(A+A^{T}\right)$ by averaging off-diagonal components
- Solving the symmetric $\hat{A} c=b$ instead of the non-symmetric $A c=b$ gives a faster/easier (but erroneous) approximation to a problem that might not require too much accuracy
- The inverse of the symmetric \hat{A} (or the notion thereof) may be used to devise a preconditioner for $A c=b$

Inner Product

- Consider the space of all vectors with length m
- The dot/inner product of two vectors is $u \cdot v=\sum_{i} u_{i} v_{i}$
- The magnitude of a vector is $\|v\|_{2}=\sqrt{v \cdot v}(\geq 0)$
- Alternative notations: $\langle u, v\rangle=u \cdot v=u^{T} v$
- Weighted inner product defined via an $n x n$ matrix A
- $\langle u, v\rangle_{A}=u \cdot A v=u^{T} A v$
- Since $\langle v, u\rangle_{A}=v^{T} A u=u^{T} A^{T} v$, weighted inner products commute when A is symmetric
- The standard dot product uses identity matrix weighting: $\langle u, v\rangle=\langle u, v\rangle_{I}$

Definiteness

- Assume A is symmetric so that $\langle u, v\rangle_{A}=\langle v, u\rangle_{A}$
- A is positive definite if and only if $\left\langle v, v>_{A}=v^{T} A v>0\right.$ for $\forall v \neq 0$
- A is positive semi-definite if and only if $<v, v>_{A}=v^{T} A v \geq 0$ for $\forall v \neq 0$
- We abbreviate with SPD and SP(S)D
- A is negative definite if and only if $<v, v>_{A}=v^{T} A v<0$ for $\forall v \neq 0$
- A is negative semi-definite if and only if $<v, v>_{A}=v^{T} A v \leq 0$ for $\forall v \neq 0$
- If A is negative (semi) definite, then $-A$ is positive (semi) definite (and vice versa)
- Thus, can convert such problems to SPD or SP(S)D
- A is considered indefinite when it is neither positive/negative semi-definite

Eigenvalues

- SPD matrices have all eigenvalues >0
- SP(S)D matrices have all eigenvalues ≥ 0
- Symmetric negative definite matrices have all eigenvalues <0
- Symmetric negative semi-definite matrices have all eigenvalues ≤ 0
- Indefinite matrices have both positive and negative eigenvalues

SPD Matrices

- When A is $\operatorname{SP}(\mathrm{S}) \mathrm{D}, \Lambda=\Sigma$ and the standard SVD is $A=V \Sigma V^{T}$ (i.e. $U=V$)
- The singular values are the (all positive) eigenvalues of A
- Construct V with $\operatorname{det} V=1$ (as usual), and all $\sigma_{k}>0$ implies that there are no reflections
- Since all $\sigma_{k}>0$, SPD matrices have full rank and are invertible
- SP(S)D (and not SPD) has at least one $\sigma_{k}=0$ and a null space
- Often, one can slightly modify SPD techniques for SP(S)D matrices
- Unfortunately, indefinite matrices are significantly more challenging

Cholesky Factorization

- SPD matrices have an $L U$ factorization of $L L^{T}$ and don't require elimination to find it
- Consider $\left(\begin{array}{ll}a_{11} & a_{21} \\ a_{21} & a_{22}\end{array}\right)=\left(\begin{array}{cc}l_{11} & 0 \\ l_{21} & l_{22}\end{array}\right)\left(\begin{array}{cc}l_{11} & l_{21} \\ 0 & l_{22}\end{array}\right)=\left(\begin{array}{cc}l_{11}^{2} & l_{11} l_{21} \\ l_{11} l_{21} & l_{21}^{2}+l_{22}^{2}\end{array}\right)$
- So $l_{11}=\sqrt{a_{11}}$ and $l_{21}=\frac{a_{21}}{l_{11}}$ and $l_{22}=\sqrt{a_{22}-l_{21}^{2}}$

$$
\begin{aligned}
& \operatorname{for}(\mathrm{j}=1, \mathrm{n})\{ \\
& \qquad \operatorname{for}(\mathrm{k}=1, \mathrm{j}-1) \text { for }(\mathrm{i}=\mathrm{j}, \mathrm{n}) a_{i j}-=a_{i k} a_{j k} ; \\
& \left.a_{j j}=\sqrt{a_{j j}} ; \text { for }(\mathrm{k}=\mathrm{j}+1, \mathrm{n}) \quad a_{k j} /=a_{j j} ;\right\}
\end{aligned}
$$

 For each column j of the matrix
II Loop over all previous columns k, and subtract a multiple of column k from the current column j
II Take the square root of the diagonal entry, and scale column j by that value

- This factors the matrix "in place" replacing A with L

Incomplete Cholesky Preconditioner

- Cholesky factorization can be used to construct a preconditioner for a sparse matrix
- The full Cholesky factorization would fill in too many non-zero entries
- So, incomplete Cholesky preconditioning uses Cholesky factorization with the caveat that only the nonzero entries are modified (all zeros remain zeros)

Rules Galore

- There are many rules/theorems regarding special matrices (especially for SPD)
- It is important to be aware of reference material (and to look things up)
- Examples:
- SPD matrices don't require pivoting during $L U$ factorization
- A symmetric (strictly) diagonally dominant matrix with positive diagonal entries is positive definite
- Jacobi and Gauss-Seidel iteration converge when a matrix is strictly (or irreducibly) diagonally dominant
- Etc.

