Special Matrices



(Strict) Diagonal Dominance

* The magnitude of each diagonal element is (either):
* strictly larger than the sum of the magnitudes of all the other elements in its row
* strictly larger than the sum of the magnitudes of all the other elements in its column

* One may row/column scale and permute rows/columns to achieve diagonal
dominance (since it’s just a rewriting of the equations)

* Recall: choosing the form of the equations wisely is important

* E.g. consider (:é _12) (2) 7 (?L)

« Switch rows (g _12) (2) = (g) and column scale (g —42) (—.C51C2) il (g)



(Strict) Diagonal Dominance

e Strictly diagonally dominant (square) matrices are guaranteed to be non-singular
e Since det(4) = det(A"), either row or column diagonal dominance is enough

* Column diagonal dominance guarantees that pivoting is not required during LU
factorization

* However, pivoting still improves robustness

* E.g. consider ( . ) where 50 is more desirable than 4 for a,

=S ()



Recall: SVD Construction (Unit 3)

siiet A= ((1) _01) seithatidid =445 = [Land thusilfi= Vi=> = |

e But A # UXVT = [ What’s wrong?

e Given a column vector v of V, Av, = UXVTv, = UXé, = Uoyé, = o,u, Where
Uy is the corresponding column of U

i =(3 OO = ) =wowm =( 4)O=(%) ()=

* Since U and IV are orthonormal, their columns are unit length
 However, there are still two choices for the direction of each column

_01) makes U = A, and thus A = UXVT as

* Multiplying u, by —1 to get u, = (
desired



Symmetric Matrices

* Since ATA = AA"T = A?, both the columns of U and the columns of V are
eigenvectors of A

* They have identical (but potentially opposite) directions: u; = +v,

* Thus, Av,, = o, u;, implies Av,, = +o0,v
K KUk K kVk

* That is, the v, (and u;,) are eigenvectors of A with eigenvalues +o;

 Similar to the polar SVD, can pull negative signs out of the columns of U into the
o, to obtain U = V and A = VAV as a modified SVD

e A = VAVT implies AV = VA which is the matrix form of the eigensystem of A
* Here, A contains the positive and negative eigenvalues of A




Making/Breaking Symmetry

* Row/column scaling can make or break symmetry:

. BT AN S
3 _4) by —2 gives a non-symmetric (—6 8)

* Additional column scaling by —2 gives a symmetric (—56 __166)

* Scaling the same row/column together in the same way preserves symmetry

* Row scaling (

* Important: a nonsymmetric matrix might be inherently symmetric when properly
rescaled/rearranged



Symmetric Approximation

e A non-symmetric A can be approximated by a symmetric A = %(A + A") by
averaging off-diagonal components
e Solving the symmetric Ac = b instead of the non-symmetric Ac = b gives a

faster/easier (but erroneous) approximation to a problem that might not require
too much accuracy

e The inverse of the symmetric A (or the notion thereof) may be used to devise a
preconditioner for Ac = b



Inner Product

* Consider the space of all vectors with length m

* The dot/inner product of two vectorsisu - v = },; u;v;
* The magnitude of a vectoris [|v||, = v v (= 0)

e Alternative notations: < u,v>=u-v=u'v

e Weighted inner product defined via an nxn matrix 4

c<u,v>,=u-Av =ulAv

* Since < v,u >,= v Au = u' AT v, weighted inner products commute when 4 is
symmetric

* The standard dot product uses identity matrix weighting: < u, v > =< u,v >,



Definiteness

* Assume A issymmetricsothat< u,v >, = <v,u >4

* A is positive definite ifand only if < v, v >, = vIAv > 0forVv # 0
* A is positive semi-definite ifand only if < v, v >,= vIAv > 0 forvVv # 0
* We abbreviate with SPD and SP(S)D

* Ais negative definiteifand only if < v, v >,= vIAv < 0forvVv # 0

* A is negative semi-definite ifand only if < v, v >, = vIAv < 0 forvVv # 0

* |If A is negative (semi) definite, then —A is positive (semi) definite (and vice versa)
* Thus, can convert such problems to SPD or SP(S)D

» Ais considered indefinite when it is neither positive/negative semi-definite




Eigenvalues

* SPD matrices have all eigenvalues > 0
e SP(S)D matrices have all eigenvalues = 0

* Symmetric negative definite matrices have all eigenvalues < 0
* Symmetric negative semi-definite matrices have all eigenvalues < 0

* Indefinite matrices have both positive and negative eigenvalues



SPD Matrices

e When A is SP(S)D, A = X and the standard SVDis A = VIV (i.e. U = V)

* The singular values are the (all positive) eigenvalues of A

* Construct VV with detV = 1 (as usual), and all g, > 0 implies that there are no
reflections

* Since all o, > 0, SPD matrices have full rank and are invertible

* SP(S)D (and not SPD) has at least one g, = 0 and a null space
e Often, one can slightly modify SPD techniques for SP(S)D matrices
* Unfortunately, indefinite matrices are significantly more challenging



Cholesky Factorization

 SPD matrices have an LU factorization of LL" and don’t require elimination to find it

- . Qi Gy ol O Nl Y o By l11021
Cansiger (a21 azz) = (l [ ) ( 0 I ) e\ e lhis e 2 o 12
21 22 22 1121 31 T {5
a
e SO lll = 4/ aA11 and l21 = Tzll and l22 = \/azz - l%l
for(j=1,n){

for(k=1,j-1) for(i=j,n) a;; —= a;xa;

ajj = \/a;;; for(k=j+1,n) ay;/= ajj;}
\\ For each column j of the matrix

\\ Loop over all previous columns k, and subtract a multiple of column k from the current column j
\\ Take the square root of the diagonal entry, and scale column j by that value

* This factors the matrix “in place” replacing A with L



Incomplete Cholesky Preconditioner

e Cholesky factorization can be used to construct a preconditioner for a sparse
matrix

* The full Cholesky factorization would fill in too many non-zero entries

* So, incomplete Cholesky preconditioning uses Cholesky factorization with the
caveat that only the nonzero entries are modified (all zeros remain zeros)




Rules Galore

* There are many rules/theorems regarding special matrices (especially for SPD)
* It is important to be aware of reference material (and to look things up)

e Examples:

e SPD matrices don’t require pivoting during LU factorization

* A symmetric (strictly) diagonally dominant matrix with positive diagonal entries is positive
definite

 Jacobi and Gauss-Seidel iteration converge when a matrix is strictly (or irreducibly)
diagonally dominant

* Etc.



