
Special Matrices



(Strict) Diagonal Dominance

• The magnitude of each diagonal element is (either):
• strictly larger than the sum of the magnitudes of all the other elements in its row
• strictly larger than the sum of the magnitudes of all the other elements in its column

• One may row/column scale and permute rows/columns to achieve diagonal 
dominance (since it’s just a rewriting of the equations)
• Recall: choosing the form of the equations wisely is important
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(Strict) Diagonal Dominance

• Strictly diagonally dominant (square) matrices are guaranteed to be non-singular
• Since det 𝐴 = det 𝐴# , either row or column diagonal dominance is enough

• Column diagonal dominance guarantees that pivoting is not required during 𝐿𝑈
factorization
• However, pivoting still improves robustness

• E.g. consider 4 3
−2 50 where 50 is more desirable than 4 for 𝑎!!



Recall: SVD Construction (Unit 3)

• Let A = 1 0
0 −1 so that 𝐴#𝐴 = 𝐴𝐴# = 𝐼, and thus 𝑈 = 𝑉 = Σ = 𝐼

• But 𝐴 ≠ 𝑈Σ𝑉# = 𝐼 What’s wrong?
• Given a column vector 𝑣$ of 𝑉,	𝐴𝑣$ = 𝑈𝛴𝑉#𝑣$ = 𝑈𝛴�̂�$ = 𝑈𝜎$�̂�$ = 𝜎$𝑢$ where 
𝑢$ is the corresponding column of 𝑈
• 𝐴𝑣! =

1 0
0 −1

1
0 = 1

0 = 𝑢! but 𝐴𝑣" =
1 0
0 −1

0
1 = 0

−1 ≠ 0
1 = 𝑢"

• Since 𝑈 and 𝑉 are orthonormal, their columns are unit length
• However, there are still two choices for the direction of each column

• Multiplying 𝑢" by −1 to get 𝑢" =
0
−1 makes 𝑈 = 𝐴,	and	thus 𝐴 = 𝑈Σ𝑉# as 

desired



Symmetric Matrices

• Since 𝐴#𝐴 = 𝐴𝐴# = 𝐴", both the columns of 𝑈 and the columns of 𝑉 are 
eigenvectors of 𝐴"

• They have identical (but potentially opposite) directions: 𝑢$ = ±𝑣$
• Thus, 𝐴𝑣$ = 𝜎$𝑢$ implies 𝐴𝑣$ = ±𝜎$𝑣$
• That is, the 𝑣$ (and 𝑢$) are eigenvectors of 𝐴 with eigenvalues ±𝜎$

• Similar to the polar SVD, can pull negative signs out of the columns of 𝑈 into the 
𝜎$ to obtain 𝑈 = 𝑉 and 𝐴 = 𝑉Λ𝑉# as a modified SVD
• 𝐴 = 𝑉Λ𝑉# implies 𝐴𝑉 = 𝑉Λ which is the matrix form of the eigensystem of 𝐴
• Here, Λ contains the positive and negative eigenvalues of 𝐴



Making/Breaking Symmetry

• Row/column scaling can make or break symmetry:

• Row scaling 5 3
3 −4 by −2 gives a non-symmetric 5 3

−6 8
• Additional column scaling by −2 gives a symmetric 5 −6

−6 −16
• Scaling the same row/column together in the same way preserves symmetry

• Important: a nonsymmetric matrix might be inherently symmetric when properly 
rescaled/rearranged



Symmetric Approximation

• A non-symmetric 𝐴 can be approximated by a symmetric I𝐴 = !
"
(𝐴 + 𝐴#) by 

averaging off-diagonal components
• Solving the symmetric I𝐴𝑐 = 𝑏 instead of the non-symmetric 𝐴𝑐 = 𝑏 gives a 

faster/easier (but erroneous) approximation to a problem that might not require 
too much accuracy
• The inverse of  the symmetric I𝐴 (or the notion thereof) may be used to devise a 

preconditioner for 𝐴𝑐 = 𝑏



Inner Product

• Consider the space of all vectors with length 𝑚
• The dot/inner product of two vectors is 𝑢 ⋅ 𝑣 = ∑% 𝑢%𝑣%
• The magnitude of a vector is 𝑣 " = 𝑣 ⋅ 𝑣 (≥ 0)
• Alternative notations: < 𝑢, 𝑣 > = 𝑢 ⋅ 𝑣 = 𝑢#𝑣

• Weighted inner product defined via an 𝑛𝑥𝑛 matrix 𝐴
• < 𝑢, 𝑣 >& = 𝑢 ⋅ 𝐴𝑣 = 𝑢#𝐴𝑣
• Since < 𝑣, 𝑢 >&= 𝑣#𝐴𝑢 = 𝑢#𝐴#𝑣, weighted inner products commute when 𝐴 is 

symmetric
• The standard dot product uses identity matrix weighting: < 𝑢, 𝑣 > = < 𝑢, 𝑣 >'



Definiteness

• Assume 𝐴 is symmetric so that < 𝑢, 𝑣 >! = < 𝑣, 𝑢 >!

• 𝐴 is positive definite if and only if < 𝑣, 𝑣 >!= 𝑣"𝐴𝑣 > 0 for ∀𝑣 ≠ 0
• 𝐴 is positive semi-definite if and only if < 𝑣, 𝑣 >!= 𝑣"𝐴𝑣 ≥ 0 for ∀𝑣 ≠ 0
• We abbreviate with SPD and SP(S)D

• 𝐴 is negative definite if and only if < 𝑣, 𝑣 >!= 𝑣"𝐴𝑣 < 0 for ∀𝑣 ≠ 0
• 𝐴 is negative semi-definite if and only if < 𝑣, 𝑣 >!= 𝑣"𝐴𝑣 ≤ 0 for ∀𝑣 ≠ 0
• If 𝐴 is negative (semi) definite, then −𝐴 is positive (semi) definite (and vice versa)
• Thus, can convert such problems to SPD or SP(S)D

• 𝐴 is considered indefinite when it is neither positive/negative semi-definite



Eigenvalues

• SPD matrices have all eigenvalues  > 0
• SP(S)D matrices have all eigenvalues  ≥ 0

• Symmetric negative definite matrices have all eigenvalues  < 0
• Symmetric negative semi-definite matrices have all eigenvalues ≤ 0

• Indefinite matrices have both positive and negative eigenvalues



SPD Matrices

• When 𝐴 is SP(S)D, Λ = Σ and the standard SVD is 𝐴 = 𝑉Σ𝑉# (i.e. 𝑈 = 𝑉)

• The singular values are the (all positive) eigenvalues of 𝐴
• Construct 𝑉 with det 𝑉 = 1 (as usual), and all 𝜎$ > 0 implies that there are no 

reflections
• Since all 𝜎$ > 0, SPD matrices have full rank and are invertible

• SP(S)D (and not SPD) has at least one 𝜎$ = 0 and a null space
• Often, one can slightly modify SPD techniques for SP(S)D matrices
• Unfortunately, indefinite matrices are significantly more challenging



Cholesky Factorization

• SPD matrices have an 𝐿𝑈 factorization of 𝐿𝐿" and don’t require elimination to find it

• Consider 
𝑎## 𝑎$#
𝑎$# 𝑎$$ = 𝑙## 0

𝑙$# 𝑙$$
𝑙## 𝑙$#
0 𝑙$$

= 𝑙##$ 𝑙##𝑙$#
𝑙##𝑙$# 𝑙$#$ + 𝑙$$$

• So 𝑙## = 𝑎## and  𝑙$# =
%!"
&""

and 𝑙$$ = 𝑎$$ − 𝑙$#$

for(j=1,n){
for(k=1,j-1) for(i=j,n)  𝑎'( −= 𝑎')𝑎();
𝑎(( = 𝑎((;  for(k=j+1,n)  𝑎)(/= 𝑎((;}

\\ For each column j of the matrix
\\ Loop over all previous columns k, and subtract a multiple of column k from the current column j
\\ Take the square root of the diagonal entry, and scale column j by that value

• This factors the matrix “in place” replacing 𝐴 with 𝐿



Incomplete Cholesky Preconditioner

• Cholesky factorization can be used to construct a preconditioner for a sparse 
matrix
• The full Cholesky factorization would fill in too many non-zero entries
• So, incomplete Cholesky preconditioning uses Cholesky factorization with the 

caveat that only the nonzero entries are modified (all zeros remain zeros)



Rules Galore

• There are many rules/theorems regarding special matrices (especially for SPD)
• It is important to be aware of reference material (and to look things up)

• Examples: 
• SPD matrices don’t require pivoting during 𝐿𝑈 factorization
• A symmetric (strictly) diagonally dominant matrix with positive diagonal entries is positive 

definite
• Jacobi and Gauss-Seidel iteration converge when a matrix is strictly (or irreducibly) 

diagonally dominant
• Etc. 


