
Curse of Dimensionality

Numerical Integration (Quadrature)

• Approximate ∫!!
!" 𝑓 𝑥 𝑑𝑥 numerically

• Break up 𝑥", 𝑥# into subintervals, and consider each subinterval separately
• On each subinterval:
• Reconstruct the function
• Analytically find the area under the reconstructed curve

• These two steps can be combined in various ways (for efficiency)

• 𝑓 is often not explicitly known
• I.e., often only have access to output values 𝑓 𝑥$ given input values 𝑥$
• In addition, it could be “expensive” to evaluate 𝑓 𝑥$, especially when it requires

running code

Newton-Cotes Quadrature

• On each subinterval, choose 𝑝 equally spaced points and use 𝑝 − 1 degree
polynomial interpolation to reconstruct the function and approximate the area
under the curve

• Obtains the exact solution when 𝑓 is a degree 𝑝 − 1 polynomial (as expected)

• When the number of points 𝑝 is odd, symmetric cancellation gives the exact
solution on a degree 𝑝 polynomial (1 degree higher than expected)

Symmetric Cancellation

• When p = 2 points, the 1st degree
piecewise linear approximation
integrates piecewise linear functions
exactly
• When p = 1 point, the 0th degree

piecewise constant approximation
(also) integrates piecewise linear
functions exactly
• Note the cancellation of under/over

approximations in the figure

Newton-Cotes Quadrature

• Consider a total of 𝑚 subintervals
• Piecewise constant approximation (𝑝 = 1 point) uses 𝑚 points to integrate

piecewise linear functions exactly
• Piecewise linear approximation (𝑝 = 2 points) uses 𝑚 + 1 points to integrate

piecewise linear functions exactly
• points on the boundary between intervals are used for both intervals

• Piecewise quadratic approximation (𝑝 = 3 points) uses 2𝑚 + 1 points to
integrate piecewise cubic functions exactly
• Piecewise cubic approximation (𝑝 = 4 points) uses 3𝑚 + 1 points to integrate

piecewise cubic functions exactly

Local and Global Error

• Degree 𝑝 polynomial reconstruction captures the Taylor expansion terms up to
and including !

!

"!
𝑓(") 𝑥 , with 𝑂 ℎ"&' errors

• This 𝑂(ℎ"&') error in the height of the function multiplied times the 𝑂(ℎ) width
of the interval gives a per interval area error (local error) of 𝑂(ℎ"&()

• The total number of intervals is)"*)#
+(!)

= 𝑂 '
!

, so the total error (global error) is

𝑂 '
!
𝑂 ℎ"&(= 𝑂(ℎ"&')

• Doubling the number of intervals halves their size leading to '
(

"&'
as much

error, which is denoted by an order of accuracy of 𝑝 + 1

Newton-Cotes Quadrature (Examples)

• Midpoint Rule: ∑, ℎ, 𝑓(𝑥,-,.)
• 1 point, piecewise constant, exact for piecewise linear, 2nd order accurate, 𝑂(ℎ!) error

• Trapezoidal Rule: ∑, ℎ,
/)$

%&'(&/)$
)$*+(

(
• 2 points, piecewise linear, exact for piecewise linear, 2nd order accurate, 𝑂(ℎ!) error

• Simpson’s Rule: ∑, ℎ,
/)$

%&'(&0/)$
,$- &/)$

)$*+(

1
• 3 points, piecewise quadratic, exact for piecewise cubic, 4th order accurate, 𝑂(ℎ") error

Gaussian Quadrature

• Use 𝑝 optimally chosen points to obtain a method that is exact on degree
2𝑝 − 1 polynomials, and thus has an order of accuracy of 2𝑝

• For example: ∑! ℎ!
" #%

&%'$
(%
) *

%" #%
&%'%

(%
) *

&
• 2 points, piecewise cubic, exact for piecewise cubic, 4th order accurate, 𝑂(ℎ0)

error
• Same accuracy as the 3 point Simpson’s Rule
• Simpson has 1 point on shared boundaries, so only 2𝑚 + 1 total points are required
• That is, Gaussian quadrature only saves 1 point in total (2𝑚 total points)

Two Dimensions

• ∬2 𝑓 𝑥, 𝑦 𝑑𝐴 where sub-regions 𝑑𝐴 of area 𝐴 are considered separately

• When 𝐴 is rectangular, it can be broken into sub-rectangles and addressed
dimension-by-dimension using 1D techniques

• When 𝐴 is more interesting, triangle sub-regions can be used to approximate it
• The difference between 𝐴 and its approximation leads to a new source of error

not seen in 1D (where the interval boundaries were merely points)

Domain Approximation Errors

• The difference between 𝐴 and its approximation (via triangles here) leads to a
new source of error in the integral (missing/extra area)

Integrating over Sub-regions

• Each triangle sub-region utilizes optimally chosen Gaussian quadrature points to
compute sub-volumes

Three Dimensions

•∭3 𝑓 𝑥, 𝑦, 𝑧 𝑑𝑉 where tetrahedral sub-regions 𝑑𝑉 of volume 𝑉 are each
considered separately (with Gaussian quadrature points)

Curse of Dimensionality

• Consider a 1st order accurate method
• 1D: doubling the number of intervals cuts the error in half (2x work = ½ error)
• 2D: halving interval size requires 4 times the rectangles/triangles (4x work = ½ error)
• 3D: halving interval size requires 8 times the cubes/boxes/tets (8x work = ½ error)
• 4D: 16x work = ½ error, 5D: 32x work = ½ error, etc.
• Cutting error by a factor of 4 in 5D takes 32+=1024x work
• Cutting error by a factor of 8 in 5D takes 32,=32,768x work
• If the original code took 1 sec to run in 5D, cutting error by a factor of 8 takes 9 hours
• And cutting error by a factor of 16 takes 12 days
• And cutting the error by a factor of 32 takes over a year…. Yep, you’re cursed

Curse of Dimensionality

• Consider a 2nd order accurate method
• In 1D/2D/3D/4D/5D/etc. halving the interval size gives 4 times less error
• Cutting error by a factor of 4 in 5D takes 32x work
• If the original code took 1 sec to run in 5D, cutting error by a factor of 16 takes

only 17 min (much faster than the 12 days for the 1st order accurate method)
• Cutting error by a factor of 1024 (3 decimal places more accuracy) takes over a

year…
• In 10D, cutting error by a factor of 4 takes 1024x work
• Second order is better than first, but still intractable in higher dimensions
• Moreover, it’s difficult (or impossible) to construct higher order methods in

higher dimensions (and overfitting is a concern too)

Conclusion

• Newton-Cotes style approaches are only practical for 1D/2D/3D
• or 1D/2D/3D + time

• Sometimes they can work ok in 4D

A Simple Example

• Consider approximating 𝜋 = 3.1415926535…
• Use a compass to construct a circle with radius = 1
• Since 𝐴 = 𝜋𝑟(, the area of this unit circle is 𝜋

• Integrate 𝑓 𝑥, 𝑦 = 1 over the unit circle to obtain ∬2 𝑓 𝑥, 𝑦 𝑑𝐴 = 𝜋

𝐴𝑟𝑒𝑎 = 𝜋

Newton-Cotes Approach
• Inscribe triangles inside the circle
• Sum the area of all the triangles (no need to trivially multiply by the height = 1)
• The difference between the area 𝐴 and its approximation with triangles leads to errors

𝜋 ≈ 2 𝜋 ≈ 2.8284

Monte Carlo Approach
• Construct a square with side length 4 containing the circle
• Randomly generate 𝑁 points in the square (color points inside the circle blue)
• Since 2.$).%&

2/01
= 4

'1
, can approximate 𝜋 ≈ 16 5/%2&

5/%2&&5)&-

𝜋 ≈ 3.136 𝜋 ≈ 3.1440

Monte Carlo Methods
• Typically used in higher dimensions (5D or more)
• Random (pseudo-random) numbers generate sample points that are multiplied

by “element size” (e.g. length, area, volume, etc.)

• Error decreases like '
5

where N is the number of samples (only ½ order accurate)
• E.g. 100 times more sample points are needed to gain one more digit of accuracy

• Very slow convergence, but independent of the number of dimensions!
• Not competitive for lower dimensional problems (i.e., 1D, 2D, 3D), but the only

tractable approach for high dimensional problems

Machine Learning Implications
• Consider 𝑦 = 𝑓(𝑥) where 𝑥 ∈ 𝑅6 with large 𝑛
• Newton-Cotes style approaches would first do polynomial interpolation, and then

analytically integrate the result
• An enormous number of points (and control volumes) is required to construct

polynomial functions in higher dimensions (curse of dimensionality)
• The same is true when constructing 𝑦 = 𝑓(𝑥) for function interpolation (in order

to inference), i.e. a high dimensional 𝑥 is intractable
• Thus, Monte Carlo approaches are far more efficient!
• This is a major reason for the close collaborations between ML/DL and Statistics

departments
• as compared to classical engineering, which operates in a lower dimensional 3D model of

the physical world (and thus has closer ties to Applied Mathematics)

