Curse of Dimensionality

Numerical Integration (Quadrature)

- Approximate $\int_{x_{L}}^{x_{R}} f(x) d x$ numerically
- Break up $\left[x_{L}, x_{R}\right]$ into subintervals, and consider each subinterval separately
- On each subinterval:
- Reconstruct the function
- Analytically find the area under the reconstructed curve
- These two steps can be combined in various ways (for efficiency)
- f is often not explicitly known
- I.e., often only have access to output values $f\left(x_{i}\right)$ given input values x_{i}
- In addition, it could be "expensive" to evaluate $f\left(x_{i}\right)$, especially when it requires running code

Newton-Cotes Quadrature

- On each subinterval, choose p equally spaced points and use $p-1$ degree polynomial interpolation to reconstruct the function and approximate the area under the curve
- Obtains the exact solution when f is a degree $p-1$ polynomial (as expected)
- When the number of points p is odd, symmetric cancellation gives the exact solution on a degree p polynomial (1 degree higher than expected)

Symmetric Cancellation

- When $\mathrm{p}=2$ points, the $1^{\text {st }}$ degree piecewise linear approximation integrates piecewise linear functions exactly
- When $p=1$ point, the $0^{\text {th }}$ degree piecewise constant approximation (also) integrates piecewise linear functions exactly
- Note the cancellation of under/over approximations in the figure

Newton-Cotes Quadrature

- Consider a total of m subintervals
- Piecewise constant approximation ($p=1$ point) uses m points to integrate piecewise linear functions exactly
- Piecewise linear approximation ($p=2$ points) uses $m+1$ points to integrate piecewise linear functions exactly
- points on the boundary between intervals are used for both intervals
- Piecewise quadratic approximation ($p=3$ points) uses $2 m+1$ points to integrate piecewise cubic functions exactly
- Piecewise cubic approximation ($p=4$ points) uses $3 m+1$ points to integrate piecewise cubic functions exactly

Local and Global Error

- Degree p polynomial reconstruction captures the Taylor expansion terms up to and including $\frac{h^{p}}{p!} f^{(p)}(x)$, with $O\left(h^{p+1}\right)$ errors
- This $O\left(h^{p+1}\right)$ error in the height of the function multiplied times the $O(h)$ width of the interval gives a per interval area error (local error) of $O\left(h^{p+2}\right)$
- The total number of intervals is $\frac{x_{R}-x_{L}}{O(h)}=O\left(\frac{1}{h}\right)$, so the total error (global error) is $O\left(\frac{1}{h}\right) O\left(h^{p+2}\right)=O\left(h^{p+1}\right)$
- Doubling the number of intervals halves their size leading to $\left(\frac{1}{2}\right)^{p+1}$ as much error, which is denoted by an order of accuracy of $p+1$

Newton-Cotes Quadrature (Examples)

- Midpoint Rule: $\sum_{i} h_{i} f\left(x_{i}^{m i d}\right)$
- 1 point, piecewise constant, exact for piecewise linear, $2^{\text {nd }}$ order accurate, $O\left(h^{2}\right)$ error
- Trapezoidal Rule: $\sum_{i} h_{i} \frac{f\left(x_{i}^{\text {left }}\right)+f\left(x_{i}^{\text {right }}\right)}{2}$
- 2 points, piecewise linear, exact for piecewise linear, $2^{\text {nd }}$ order accurate, $O\left(h^{2}\right)$ error
- Simpson's Rule: $\sum_{i} h_{i} \frac{f\left(x_{i}^{\text {left }}\right)+4 f\left(x_{i}^{\text {mid }}\right)+f\left(x_{i}^{\text {right }}\right)}{6}$
- 3 points, piecewise quadratic, exact for piecewise cubic, $4^{\text {th }}$ order accurate, $O\left(h^{4}\right)$ error

Gaussian Quadrature

- Use p optimally chosen points to obtain a method that is exact on degree $2 p-1$ polynomials, and thus has an order of accuracy of $2 p$
- For example: $\sum_{i} h_{i} \frac{f\left(x_{i}^{m i d}-\frac{h_{i}}{2 \sqrt{3}}\right)+f\left(x_{i}^{m i d}+\frac{h_{i}}{2 \sqrt{3}}\right)}{2}$
- 2 points, piecewise cubic, exact for piecewise cubic, $4^{\text {th }}$ order accurate, $O\left(h^{4}\right)$ error
- Same accuracy as the 3 point Simpson's Rule
- Simpson has 1 point on shared boundaries, so only $2 m+1$ total points are required
- That is, Gaussian quadrature only saves 1 point in total ($2 m$ total points)

Two Dimensions

- $\iint_{A} f(x, y) d A$ where sub-regions $d A$ of area A are considered separately
- When A is rectangular, it can be broken into sub-rectangles and addressed dimension-by-dimension using 1D techniques
- When A is more interesting, triangle sub-regions can be used to approximate it
- The difference between A and its approximation leads to a new source of error not seen in 1D (where the interval boundaries were merely points)

Domain Approximation Errors

- The difference between A and its approximation (via triangles here) leads to a new source of error in the integral (missing/extra area)

Integrating over Sub-regions

- Each triangle sub-region utilizes optimally chosen Gaussian quadrature points to compute sub-volumes

Three Dimensions

- $\iiint_{V} f(x, y, z) d V$ where tetrahedral sub-regions $d V$ of volume V are each considered separately (with Gaussian quadrature points)

Curse of Dimensionality

- Consider a $1^{\text {st }}$ order accurate method
- 1D: doubling the number of intervals cuts the error in half ($2 x$ work $=1 / 2$ error)
- 2D: halving interval size requires 4 times the rectangles/triangles (4 x work $=1 / 2 \mathrm{error}$)
-3D: halving interval size requires 8 times the cubes/boxes/tets ($8 \times$ work $=1 / 2$ error)
- 4D: $16 x$ work $=1 / 2$ error, $5 D: 32 x$ work $=1 / 2$ error, etc.
- Cutting error by a factor of 4 in 5D takes $32^{2}=1024 x$ work
- Cutting error by a factor of 8 in 5D takes $32^{3}=32,768 x$ work
- If the original code took 1 sec to run in 5D, cutting error by a factor of 8 takes 9 hours
- And cutting error by a factor of 16 takes 12 days
- And cutting the error by a factor of 32 takes over a year....

Curse of Dimensionality

- Consider a $2^{\text {nd }}$ order accurate method
- In 1D/2D/3D/4D/5D/etc. halving the interval size gives 4 times less error
- Cutting error by a factor of 4 in 5D takes $32 x$ work
- If the original code took 1 sec to run in 5D, cutting error by a factor of 16 takes only 17 min (much faster than the 12 days for the $1^{\text {st }}$ order accurate method)
- Cutting error by a factor of 1024 (3 decimal places more accuracy) takes over a year...
- In 10D, cutting error by a factor of 4 takes $1024 x$ work
- Second order is better than first, but still intractable in higher dimensions
- Moreover, it's difficult (or impossible) to construct higher order methods in higher dimensions (and overfitting is a concern too)

Conclusion

- Newton-Cotes style approaches are only practical for 1D/2D/3D
- or 1D/2D/3D + time
- Sometimes they can work ok in 4D

A Simple Example

- Consider approximating $\pi=3.1415926535$...
- Use a compass to construct a circle with radius $=1$
- Since $A=\pi r^{2}$, the area of this unit circle is π
- Integrate $f(x, y)=1$ over the unit circle to obtain $\iint_{A} f(x, y) d A=\pi$

Area $=\pi$

Newton-Cotes Approach

- Inscribe triangles inside the circle
- Sum the area of all the triangles (no need to trivially multiply by the height =1)
- The difference between the area A and its approximation with triangles leads to errors

$\pi \approx 2$

$\pi \approx 2.8284$

Monte Carlo Approach

- Construct a square with side length 4 containing the circle
- Randomly generate N points in the square (color points inside the circle blue)
- Since $\frac{A_{\text {circle }}}{A_{\text {box }}}=\frac{\pi}{16}$, can approximate $\pi \approx 16\left(\frac{N_{\text {blue }}}{N_{\text {blue }}+N_{\text {red }}}\right)$

$\pi \approx 3.136$
$\pi \approx 3.1440$

Monte Carlo Methods

- Typically used in higher dimensions (5D or more)
- Random (pseudo-random) numbers generate sample points that are multiplied by "element size" (e.g. length, area, volume, etc.)
- Error decreases like $\frac{1}{\sqrt{N}}$ where N is the number of samples (only $1 / 2$ order accurate)
- E.g. 100 times more sample points are needed to gain one more digit of accuracy
- Very slow convergence, but independent of the number of dimensions!
- Not competitive for lower dimensional problems (i.e., 1D, 2D, 3D), but the only tractable approach for high dimensional problems

Machine Learning Implications

- Consider $y=f(x)$ where $x \in R^{n}$ with large n
- Newton-Cotes style approaches would first do polynomial interpolation, and then analytically integrate the result
- An enormous number of points (and control volumes) is required to construct polynomial functions in higher dimensions (curse of dimensionality)
- The same is true when constructing $y=f(x)$ for function interpolation (in order to inference), i.e. a high dimensional x is intractable
- Thus, Monte Carlo approaches are far more efficient!
- This is a major reason for the close collaborations between ML/DL and Statistics departments
- as compared to classical engineering, which operates in a lower dimensional 3D model of the physical world (and thus has closer ties to Applied Mathematics)

