Least Squares

Recall: Polynomial Interpolation (Unit 1)

- Given m data points, one can (at best) draw a unique $m-1$ degree polynomial that goes through all of them
- As long as they are not degenerate, like 3 points on a line

Recall: Basis Functions (Unit 1)

- Given basis functions ϕ and unknows $c: y=c_{1} \phi_{1}+c_{2} \phi_{2}+\cdots+c_{n} \phi_{n}$
- Monomial basis: $\phi_{k}(x)=x^{k-1}$
- Lagrange basis: $\phi_{k}(x)=\frac{\prod_{i \neq k} x-x_{i}}{\prod_{i \neq k} x_{k}-x_{i}}$
- Newton basis: $\phi_{k}(x)=\prod_{i=1}^{k-1} x-x_{i}$
-Write a (linear) equation for each point, and put into matrix form: $A c=y$
- Monomial/Lagrange/Newton basis all give the same polynomial, but different matrices

Recall: Overfitting (Unit 1)

- Given a new input \hat{x}, the interpolating polynomial infers/predicts an output \hat{y} that may be far from what one may expect

- Interpolating polynomials are smooth (continuous function and derivatives)
- Thus, they wiggle/overshoot in between data points (so that they can smoothly turn back and hit the next point)
- Overly forcing polynomials to exactly hit every data point is called overfitting (overly fitting to the data)
- It results in inference/predictions that can vary wildly from the training data

Recall: Regularization (Unit 1)

- Using a lower order polynomial that doesn't (can't) exactly fit the data points provides some degree of regularization

- A regularized interpolant contains intentional errors in the interpolation, missing some/all of the data points
- However, this hopefully makes the function more predictable/smooth in between the data points
- The data points themselves may contain noise/error, so it is not clear whether they should be interpolated exactly anyways

Recall: Regularization (Unit 1)

- Given \hat{x}, the regularized interpolant infers/predicts a more reasonable \hat{y}

- There is a trade-off between sacrificing accuracy on fitting the original input data, and obtaining better accuracy on inference/prediction for new inputs

Eliminating Basis Functions

- Consider $A c=y$:
- Each row of A evaluates all n basis functions ϕ_{k} on a single data point x_{i}
- Each column of A evaluates all m points x_{i} on a single basis function ϕ_{k}
- Regularize by reducing the number of basis functions (and thus the degree of the polynomial)
- Then, write an equation for each point, and put into matrix form $A c=y$ (as usual)
- When there are more points than basis functions, there are more rows than columns (and the matrix is tall/rectangular)
- This tall matrix has full (column) rank when the basis functions are linearly independent (and the data isn't degenerate)

Recall: Underfitting (Unit 1)

- Using too low of an order polynomial causes one to miss the data by too much

- A linear function doesn't capture the essence of this data as well as a quadratic function does
- Choosing too simple of a model function or regularizing too much prevents one from properly representing the data

Tall (Full Rank) Matrices

- Let A be a size $m x n$ tall (i.e. $m>n$) matrix with full (column) rank (i.e. rank n)
- Since there are n entries in each row, the rows span at most an n dimensional space; thus, at least $m-n$ rows are linear combinations of others
- That is, A contains (at least) $m-n$ extra unnecessary equations (that are linear combinations of others)
- Thus, A could be reduced to n equations (and size $n x n$) without losing any information
- The SVD $\left(A=U \Sigma V^{T}\right)$ illustrates this: the last $m-n$ rows of Σ are all zeros
- The last $m-n$ columns in U are hit by these zeros, and thus not in the range of A

Recall: Example (Unit 3)

$$
A=\left(\begin{array}{ccc}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9 \\
10 & 11 & 12
\end{array}\right)=
$$

$$
\left(\begin{array}{cccc}
.141 & .825 & -.420 & -.351 \\
.344 & .426 & .298 & .782 \\
.547 & .028 & .644 & -.509 \\
.750 & -.371 & -.542 & .079
\end{array}\right)\left(\begin{array}{ccc}
25.5 & 0 & 0 \\
0 & 1.29 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{ccc}
.504 & .574 & .644 \\
-.761 & -.057 & .646 \\
.408 & -.816 & .408
\end{array}\right)
$$

- Singular values are $25.5,1.29$, and 0
- Singular value of 0 indicates that the matrix is rank deficient
- The rank of a matrix is equal to its number of nonzero singular values

Recall: Extra Dimensions (Unit 3)

$$
\begin{gathered}
A=\left(\begin{array}{ccc}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9 \\
10 & 11 & 12
\end{array}\right)= \\
\left(\begin{array}{cccc}
.141 & .825 & -.420 & - \\
.344 & .426 & .298 & .7 \\
.547 & .028 & .644 & -.5 \\
.750 & -.371 & -.542 & . \\
9
\end{array}\right)\left(\begin{array}{ccc}
25.5 & 0 & 0 \\
0 & 1.29 & 0 \\
0 & 0 & 0 \\
\hline
\end{array}\right)\left(\begin{array}{ccc}
.504 & .574 & .644 \\
-.761 & -.057 & .646 \\
.408 & -.816 & .408
\end{array}\right)
\end{gathered}
$$

- The 3D space of vector inputs can only span a 3D subspace of R^{4}
- The last (green) column of U represents the unreachable dimension, orthogonal to the range of A, and is always multiplied by 0
- One can delete this column and the associated portion of Σ (and still obtain a valid factorization)

Solving Tall (Full Rank) Linear Systems

- $A c=b$ becomes $U \Sigma V^{T} c=b$ or $\Sigma\left(V^{T} c\right)=\left(U^{T} b\right)$ or $\Sigma \hat{c}=\hat{b}$
- Solve $\Sigma \hat{c}=\hat{b}$ by dividing the entries of \hat{b} by the singular values σ_{k}, then $c=V \hat{c}$
- The last $m-n$ equations are identically zero on the left, and need to be identically zero on the right as well in order for a solution to exist
- E.g. $\left(\begin{array}{cc}\sigma_{1} & 0 \\ 0 & \sigma_{2} \\ 0 & 0\end{array}\right)\binom{\hat{c}_{1}}{\hat{c}_{2}}=\left(\begin{array}{l}\hat{b}_{1} \\ \hat{b}_{2} \\ \hat{b}_{3}\end{array}\right)$ requies $\hat{b}_{3}=0$ in order to have a solution
- The last $m-n$ columns in U are not in the range of A, so b must be in the span of the first n columns of U in order for a solution to exist

False Statements

- Reasoning with a false statement leads to infinitely more false statements:

$$
\begin{gathered}
a=b \\
a^{2}=a b \\
a^{2}-b^{2}=a b-b^{2} \\
(a+b)(a-b)=b(a-b) \\
a+b=b \\
b+b=b \\
b(1+1)=b(1) \\
2=1
\end{gathered}
$$

- Don't make false statements!

False Statements

- Reasoning with a false statement leads to infinitely more false statements:

$$
\begin{gathered}
A c=b \\
A^{T} A c=A^{T} b \\
c=\left(A^{T} A\right)^{-1}\left(A^{T} b\right)
\end{gathered}
$$

- Don't make false statements!
- A mix of false/true statements makes it difficult to keep track of what is and what is not true

False Statements

- Consider a very simple $A c=b$ given by: $\binom{1}{1}(c)=\binom{3}{4}$
- This contains the equations $c=3$ and $c=4$, and as such is a false statement
- Solve via $\left(\begin{array}{ll}1 & 1\end{array}\right)\binom{1}{1}(c)=\left(\begin{array}{ll}1 & 1\end{array}\right)\binom{3}{4}$, so $2 c=7$ or $c=3.5$
- Row scale the first equation by 10 to obtain: $\binom{10}{1}(c)=\binom{30}{4}$
- Solve via $\left(\begin{array}{ll}10 & 1\end{array}\right)\binom{10}{1}(c)=\left(\begin{array}{ll}10 & 1\end{array}\right)\binom{30}{4}$, so $101 c=304$ or $c=3 \frac{1}{101}$
- Perfectly valid row scaling leads to a different answer

False Statements

- Again, starting with the same: $\binom{1}{1}(c)=\binom{3}{4}$
- Subtract 2^{*} (row 1) from row 2 to obtain $\binom{1}{-1}(c)=\binom{3}{-2}$
- Solve via $\left(\begin{array}{ll}1 & -1\end{array}\right)\binom{1}{-1}(c)=\left(\begin{array}{ll}1 & -1\end{array}\right)\binom{3}{-2}$, so $2 c=5$ or $c=2.5$
- A perfectly valid row operation again leads to a different answer
- Note that $2.5 \notin[3,4]$ either!
- Problem: $\binom{3}{4}$ is not in the range of $\binom{1}{1}$, so $\binom{1}{1}(c) \neq\binom{ 3}{4}$ for $\forall c \in \mathcal{R}$

False Statements

- Consider $y=c_{1} \phi_{1}$ with monomial $\phi_{1}=1$, and data points $(1,3)$ and $(2,4)$
- This leads to the same $\binom{1}{1}\left(c_{1}\right)=\binom{3}{4}$

True Statements

- Consider $y=c_{1} \phi_{1}$ with monomial $\phi_{1}=1$, and data points $(1,3)$ and $(2,3)$
- This leads instead to $\binom{1}{1}\left(c_{1}\right)=\binom{3}{3}$ which is valid and has solution $c_{1}=3$

True Statements

- When b is in the range of A, then $A c=b$ is a true statement
- There exists at least one c (by definition) constrained by this statement
- When b is in not the range of A, then $A c \neq b$ is the true statement
- In this case, $A c \neq b$ is true for all c
- The equation for the residual $r=b-A c$ is always true (it's a definition)
- When b is in the range of A, there exists a c with $A c=b$ and $r=0$
- When b is not in the range of A, then $A c \neq b$ and $r \neq 0$ for all c
- The goal in both cases is to minimize the residual $r=b-A c$

Norm Matters

- Consider $y=c_{1} \phi_{1}$ where $\phi_{1}=1$ along with data points $(1,3),(2,3)$, and $(3,4)$
- This leads to $r=\left(\begin{array}{l}3 \\ 3 \\ 4\end{array}\right)-\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)\left(c_{1}\right)$
- Setting $c_{1}=3.5$ minimizes $\|r\|_{\infty}$ with $r=\left(\begin{array}{c}-.5 \\ -.5 \\ .5\end{array}\right),\|r\|_{\infty}=.5,\|r\|_{2}=\frac{\sqrt{3}}{2}$
- Setting $c_{1}=3 \frac{1}{3}$ minimizes $\|r\|_{2}$ with $r=\left(\begin{array}{c}-1 / 3 \\ -1 / 3 \\ 2 / 3\end{array}\right),\|r\|_{\infty}=\frac{2}{3},\|r\|_{2}=\frac{\sqrt{6}}{3}$

Row Operations Matter

- Given a set of equations, they can be manipulated in various ways
- These manipulations often change the answer
- Thus, one should carefully choose the residual they want minimized
- Equivalent sets of equations lead to different answers when minimizing the corresponding residuals

Weighted Minimization

- Given $r=b-A c$, some equations may be deemed more important than others
- Scaling entries in the residual (before taking the norm) changes the relative importance of various equations
- This is accomplished by minimizing $\|D r\|$ for a diagonal matrix D with non-zero diagonal entries
- This is equivalent to row scaling: $D r=D b-D A c$
- Column scaling doesn't effect the residual, e.g. $D r=D b-D A \widehat{D}^{-1}(\widehat{D} c)$
- So, it can be used to preserve symmetry: $D r=D b-\left(D A D^{T}\right)\left(D^{-T} c\right)$
- when A is square and symmetric

Least Squares

- Minimizing $\|r\|_{2}$ is referred to as least squares, and the resulting solution is referred to as the least squares solution (it's really a least squares solution)
- A least squares solution is the unique solution when $\|r\|_{2}=0$
- Minimizing $\|D r\|_{2}$ is referred to as weighted least squares
- $\|r\|_{2}$ is minimized when $\|r\|_{2}^{2}$ is minimized
- And $\|r\|_{2}^{2}=r \cdot r=(b-A c) \cdot(b-A c)=c^{T} A^{T} A c-2 b^{T} A c+b^{T} b$ is minimized when $c^{T} A^{T} A c-2 b^{T} A c$ is minimized
- Thus, minimize $c^{T} A^{T} A c-2 b^{T} A c$
- For weighted least squares, minimize $c^{T} A^{T} D^{2} A c-2 b^{T} D^{2} A c$

