Basic Optimization

Jacobian

- The Jacobian of $F(c)=\left(\begin{array}{c}F_{1}(c) \\ F_{2}(c) \\ \vdots \\ F_{m}(c)\end{array}\right)$ has entries $J_{i k}=\frac{\partial F_{i}}{\partial c_{k}}(c)$
- Thus, the Jacobian $J(c)=F^{\prime}(c)=\left(\begin{array}{cccc}\frac{\partial F_{1}}{\partial c_{1}}(c) & \frac{\partial F_{1}}{\partial c_{2}}(c) & \cdots & \frac{\partial F_{1}}{\partial c_{n}}(c) \\ \frac{\partial F_{2}}{\partial c_{1}}(c) & \frac{\partial F_{2}}{\partial c_{2}}(c) & \cdots & \frac{\partial F_{2}}{\partial c_{n}}(c) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial F_{m}}{\partial c_{1}}(c) & \frac{\partial F_{m}}{\partial c_{2}}(c) & \cdots & \frac{\partial F_{m}}{\partial c_{n}}(c)\end{array}\right)$

Gradient

- Consider the scalar (output) function $f(c)$ with multi-dimensional input c
- The Jacobian of $f(c)$ is $J(c)=\left(\begin{array}{llll}\frac{\partial f}{\partial c_{1}}(c) & \frac{\partial f}{\partial c_{2}}(c) & \cdots & \frac{\partial f}{\partial c_{n}}(c)\end{array}\right)$
- The gradient of $f(c)$ is $\nabla f(c)=J^{T}(c)=\left(\begin{array}{c}\frac{\partial f}{\partial c_{1}}(c) \\ \frac{\partial f}{\partial c_{2}}(c) \\ \vdots \\ \frac{\partial f}{\partial c_{n}}(c)\end{array}\right)$
- In 1D, both $J(c)$ and $\nabla f(c)=J^{T}(c)$ are the usual $f^{\prime}(c)$

Critical Points

- To identify critical points of $f(c)$, set the gradient to zero: $\nabla f(c)=0$
- This is a system of equations: $\left(\begin{array}{c}\frac{\partial f}{\partial c_{1}}(c) \\ \frac{\partial f}{\partial c_{2}}(c) \\ \vdots \\ \frac{\partial f}{\partial c_{n}}(c)\end{array}\right)=0$ or $\left(\begin{array}{c}\frac{\partial f}{\partial c_{1}}(c)=0 \\ \frac{\partial f}{\partial c_{2}}(c)=0 \\ \vdots \\ \frac{\partial f}{\partial c_{n}}(c)=0\end{array}\right)$
- Any c that simultaneously solves all the equations is a critical point
- In 1 D, this is the usual $f^{\prime}(c)=0$

Jacobian of the Gradient

- Taking the Jacobian of the column vector gradient gives:
- The $J(\nabla f(c))=\left(\begin{array}{cccc}\frac{\partial^{2} f}{\partial c_{1} \partial c_{1}}(c) & \frac{\partial^{2} f}{\partial c_{2} \partial c_{1}}(c) & \cdots & \frac{\partial^{2} f}{\partial c_{n} \partial c_{1}}(c) \\ \frac{\partial^{2} f}{\partial c_{1} \partial c_{2}}(c) & \frac{\partial^{2} f}{\partial c_{2} \partial c_{2}}(c) & \cdots & \frac{\partial^{2} f}{\partial c_{n} \partial c_{2}}(c) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^{2} f}{\partial c_{1} \partial c_{n}}(c) & \frac{\partial^{2} f}{\partial c_{2} \partial c_{n}}(c) & \cdots & \frac{\partial^{2} f}{\partial c_{n} \partial c_{n}}(c)\end{array}\right)$
- Note: $\frac{\partial^{2} f}{\partial c_{2} \partial c_{1}}=\frac{\partial}{\partial c_{2}}\left(\frac{\partial f}{\partial c_{1}}\right)=f_{c_{1} c_{2}}$

Hessian

- The Hessian of $f(c)$ is $H(c)=J(\nabla f(c))^{T}$ and has entries $H_{i k}=\frac{\partial f}{\partial c_{i} \partial c_{k}}(c)$ - The Hessian is $H(c)=\left(\begin{array}{cccc}\frac{\partial^{2} f}{\partial c_{1}^{2}}(c) & \frac{\partial^{2} f}{\partial c_{1} \partial c_{2}}(c) & \cdots & \frac{\partial^{2} f}{\partial c_{1} \partial c_{n}}(c) \\ \frac{\partial^{2} f}{\partial c_{2} \partial c_{1}}(c) & \frac{\partial^{2} f}{\partial c_{2}^{2}}(c) & \cdots & \frac{\partial^{2} f}{\partial c_{2} \partial c_{n}}(c) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^{2} f}{\partial c_{n} \partial c_{1}}(c) & \frac{\partial^{2} f}{\partial c_{n} \partial c_{2}}(c) & \cdots & \frac{\partial^{2} f}{\partial c_{n}^{2}}(c)\end{array}\right)$
- $H(c)$ is symmetric, when the order of differentiation doesn't matter
- In 1 D, this is the usual $f^{\prime \prime}(c)$

Differential Forms

- Vector valued function: $d F(c)=J(F(c)) d c$
- Substitute ∇f for F to get: $d \nabla f(c)=J(\nabla f(c)) d c=H^{T}(c) d c$
- Scalar valued function: $d f(c)=J(f(c)) d c$
- Take the transpose: $d f(c)=d c^{T} \nabla f(c)$
- Take (another) differential: $d^{2} f(c)=J\left(d c^{T} \nabla f(c)\right) d c$
- Some hand waving: $d^{2} f(c)=d c^{T} H^{T}(c) d c=d c \cdot H^{T}(c) d c$

Classifying Critical Points

- Given a critical point c^{*}, i.e. with $\nabla f\left(c^{*}\right)=0$, the Hessian is used to classify it
- If $H\left(c^{*}\right)$ is positive definite, then c^{*} is a local minimum
- If $H\left(c^{*}\right)$ is negative definite, then c^{*} is a local maximum
- Otherwise, $H\left(c^{*}\right)$ is indefinite, and c^{*} is a saddle point

Classifying Critical Points (in 1D)

- In 1D, given critical point c^{*}, i.e. with $\nabla f\left(c^{*}\right)=f^{\prime}\left(c^{*}\right)=0$, the Hessian is used to classify it
- In $1 \mathrm{D}, H\left(c^{*}\right)=\left(f^{\prime \prime}\left(c^{*}\right)\right)$ is a size $1 x 1$ diagonal matrix with eigenvalue $f^{\prime \prime}\left(c^{*}\right)$
- If $H\left(c^{*}\right)$ is positive definite with eigenvalue $f^{\prime \prime}\left(c^{*}\right)>0$, then c^{*} is a local minimum - As usual, $f^{\prime \prime}\left(c^{*}\right)>0$ implies concave up and a local min
- If $H\left(c^{*}\right)$ is negative definite with eigenvalue $f^{\prime \prime}\left(c^{*}\right)<0$, then c^{*} is a local maximum
- As usual, $f^{\prime \prime}\left(c^{*}\right)<0$ implies concave down and a local max
- Otherwise, $H\left(c^{*}\right)$ is indefinite with eigenvalue $f^{\prime \prime}\left(c^{*}\right)=0$, and c^{*} is a saddle point
- As usual, $f^{\prime \prime}\left(c^{*}\right)=0$ implies an inflection point (not a local extrema)

Quadratic Form

- The quadratic form of a square matrix \tilde{A} is $f(c)=\frac{1}{2} c^{T} \tilde{A} c-\tilde{b}^{T} c+\tilde{c}$
- $\operatorname{In} 1 \mathrm{D}, f(c)=\frac{1}{2} \tilde{a} c^{2}-\tilde{b} c+\tilde{c}$
- Minimize $f(c)$ by (first) finding critical points where $\nabla f(c)=0$
- Note $\nabla f(c)=\frac{1}{2} \tilde{A} c+\frac{1}{2} \tilde{A}^{T} c-\tilde{b}$, since $J\left(c^{T} v\right)=J\left(v^{T} c\right)=v^{T}$ (the gradient is v)
- Solve the symmetric system $\frac{1}{2}\left(\tilde{A}+\tilde{A}^{T}\right) c=\tilde{b}$ to find critical points
- When \tilde{A} is symmetric, $\nabla f(c)=\tilde{A} c-\tilde{b}=0$ is satisfied when $\tilde{A} c=\tilde{b}$
- In 1 D , the critical point is on the line of symmetry $\tilde{c}=\frac{\tilde{b}}{\tilde{a}}$
- That is, solve $\tilde{A} c=\tilde{b}$ to find the critical point

Quadratic Form

- The Hessian of $f(c)$ is $H=\frac{1}{2}\left(\tilde{A}^{T}+\tilde{A}\right)$ or just \tilde{A} when \tilde{A} is symmetric
- When \tilde{A} is SPD, the solution to $\tilde{A} c=\tilde{b}$ is a minimum
- When \tilde{A} is symmetric negative definite, the solution to $\tilde{A} c=\tilde{b}$ is a maximum
- When \tilde{A} is indefinite, the solution to $\tilde{A} c=\tilde{b}$ is a saddle point
- In $1 \mathrm{D}, H=(\tilde{a})$ is a size $1 x 1$ diagonal matrix with eigenvalue \tilde{a}
- As usual, $\tilde{a}>0$ implies concave up and a local min
- As usual, $\tilde{a}<0$ implies concave down and a local max
- As usual, $\tilde{a}=0$ implies an inflection point (not a local extrema)

Recall: Least Squares (Unit 8)

- Minimizing $\|r\|_{2}$ is referred to as least squares, and the resulting solution is referred to as the least squares solution (it's really a least squares solution)
- A least squares solution is the unique solution when $\|r\|_{2}=0$
- Minimizing $\|D r\|_{2}$ is referred to as weighted least squares
- $\|r\|_{2}$ is minimized when $\|r\|_{2}^{2}$ is minimized
- And $\|r\|_{2}^{2}=r \cdot r=(b-A c) \cdot(b-A c)=c^{T} A^{T} A c-2 b^{T} A c+b^{T} b$ is minimized when $c^{T} A^{T} A c-2 b^{T} A c$ is minimized
- Thus, minimize $c^{T} A^{T} A c-2 b^{T} A c$
- For weighted least squares, minimize $c^{T} A^{T} D^{2} A c-2 b^{T} D^{2} A c$

Normal Equations

- $c^{T} A^{T} D^{2} A c-2 b^{T} D^{2} A c$ has the same minimum as $\frac{1}{2} c^{T} A^{T} D^{2} A c-b^{T} D^{2} A c$
- This is a quadratic form with symmetric $\tilde{A}=A^{T} D^{2} A$ and $\tilde{b}=A^{T} D^{2} b$
- The critical point is found from solving $\tilde{A} c=\tilde{b}$ or $A^{T} D^{2} A c=A^{T} D^{2} b$
- Weighted least squares defaults to ordinary least squares when $D=I$
- For (unweighted) least squares, solve $A^{T} A c=A^{T} b$
- These are called the normal equations

Hessian

- Recall: A is a tall (or square) full rank matrix with size $m x n$ where $m \geq n$
- The Hessian $H=\tilde{A}=A^{T} A=V \Sigma^{T} U^{T} U \Sigma V^{T}=V \Sigma^{T} \Sigma V^{T}=V \Lambda V^{T}$
- where $\Lambda=\Sigma^{T} \Sigma$ is a size $n x n$ matrix of (nonzero) singular values squared
- $H V=V \Lambda$ illustrates that H has all positive eigenvalues (and so is SPD)
- That is, the critical point is indeed a minimum (as desired)

For weighted least squares:

- Nonzero diagonal elements in D implies that $D A c=0$ if and only if $A c=0$
- That is, a full column rank A implies a full column rank $D A$
- Then, the SVD of $D A$ can be used to prove that $H=(D A)^{T}(D A)$ is SPD

