
Basic Optimization



Jacobian
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Gradient 

• Consider the scalar (output) function 𝑓 𝑐 with multi-dimensional input 𝑐
• The Jacobian of 𝑓 𝑐 is 𝐽 𝑐 = &*
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• The gradient of 𝑓 𝑐 is ∇𝑓 𝑐 = 𝐽+ 𝑐 =
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• In 1D, both 𝐽 𝑐 and ∇𝑓 𝑐 = 𝐽+(𝑐) are the usual 𝑓′ 𝑐



Critical Points

• To identify critical points of 𝑓 𝑐 , set the gradient to zero: ∇𝑓 𝑐 = 0

• This is a system of equations: 
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• Any 𝑐 that simultaneously solves all the equations is a critical point

• In 1D, this is the usual 𝑓′ 𝑐 = 0



Jacobian of the Gradient

• Taking the Jacobian of the column vector gradient gives:

• The 𝐽 ∇𝑓 𝑐 =
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Hessian

• The Hessian of 𝑓 𝑐 is 𝐻 𝑐 = 𝐽 ∇𝑓 𝑐 !
and has entries 𝐻"# =
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• 𝐻 𝑐 is symmetric, when the order of differentiation doesn’t matter

• In 1D, this is the usual 𝑓′′ 𝑐



Differential Forms

• Vector valued function: 𝑑𝐹 𝑐 = 𝐽 𝐹 𝑐 𝑑𝑐
• Substitute ∇𝑓 for 𝐹 to get: 𝑑∇𝑓 𝑐 = 𝐽 ∇𝑓 𝑐 𝑑𝑐 = 𝐻+ 𝑐 𝑑𝑐

• Scalar valued function: 𝑑𝑓 𝑐 = 𝐽 𝑓 𝑐 𝑑𝑐
• Take the transpose: 𝑑𝑓 𝑐 = 𝑑𝑐+∇𝑓(𝑐)

• Take (another) differential: 𝑑"𝑓 𝑐 = 𝐽 𝑑𝑐+∇𝑓 𝑐 𝑑𝑐
• Some hand waving: 𝑑"𝑓 𝑐 = 𝑑𝑐+𝐻+ 𝑐 𝑑𝑐 = 𝑑𝑐 ⋅ 𝐻+ 𝑐 𝑑𝑐



Classifying Critical Points

• Given a critical point 𝑐∗, i.e. with ∇𝑓 𝑐∗ = 0, the Hessian is used to classify it
• If 𝐻(𝑐∗) is positive definite, then 𝑐∗ is a local minimum
• If 𝐻(𝑐∗) is negative definite, then 𝑐∗ is a local maximum
• Otherwise, 𝐻(𝑐∗) is indefinite, and 𝑐∗ is a saddle point



Classifying Critical Points (in 1D)

• In 1D, given critical point 𝑐∗, i.e. with ∇𝑓 𝑐∗ = 𝑓′(𝑐∗) = 0, the Hessian is used to 
classify it
• In 1D, 𝐻 𝑐∗ = 𝑓(( 𝑐∗ is a size 1𝑥1 diagonal matrix with eigenvalue 𝑓(( 𝑐∗

• If 𝐻(𝑐∗) is positive definite with eigenvalue 𝑓(( 𝑐∗ > 0, then 𝑐∗ is a local minimum
• As usual, 𝑓(( 𝑐∗ > 0 implies concave up and a local min

• If 𝐻(𝑐∗) is negative definite with eigenvalue 𝑓(( 𝑐∗ < 0, then 𝑐∗ is a local maximum
• As usual, 𝑓(( 𝑐∗ < 0 implies concave down and a local max

• Otherwise, 𝐻(𝑐∗) is indefinite with eigenvalue 𝑓(( 𝑐∗ = 0, and 𝑐∗ is a saddle point
• As usual, 𝑓(( 𝑐∗ = 0 implies an inflection point (not a local extrema)



Quadratic Form

• The quadratic form of a square matrix 1𝐴 is 𝑓 𝑐 = !
"
𝑐+ 1𝐴𝑐 − 4𝑏+𝑐 + �̃�

• In 1D,  𝑓 𝑐 = !
" $𝑎𝑐

" − '𝑏𝑐 + �̃�

• Minimize 𝑓 𝑐 by (first) finding critical points where ∇𝑓 𝑐 = 0

• Note ∇𝑓 𝑐 = !
"
1𝐴𝑐 + !

"
1𝐴+𝑐 − 4𝑏, since 𝐽 𝑐+𝑣 = 𝐽 𝑣+𝑐 = 𝑣+ (the gradient is 𝑣)

• Solve the symmetric system  !"
+𝐴 + +𝐴# 𝑐 = '𝑏 to find critical points

• When 1𝐴 is symmetric, ∇𝑓 𝑐 = 1𝐴𝑐 − 4𝑏 = 0 is satisfied when 1𝐴𝑐 = 4𝑏
• In 1D, the critical point is on the line of symmetry �̃� =
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• That is, solve 1𝐴𝑐 = 4𝑏 to find the critical point



Quadratic Form

• The	Hessian	of	𝑓 𝑐 is	𝐻 = !
"
( 1𝐴+ + 1𝐴) or just 1𝐴 when 1𝐴 is symmetric

• When 1𝐴 is SPD, the solution to 1𝐴𝑐 = 4𝑏 is a minimum
• When 1𝐴 is symmetric negative definite, the solution to 1𝐴𝑐 = 4𝑏 is a maximum
• When 1𝐴 is indefinite, the solution to 1𝐴𝑐 = 4𝑏 is a saddle point

• In 1D, 𝐻 = D𝑎 is a size 1𝑥1 diagonal matrix with eigenvalue D𝑎
• As usual, D𝑎 > 0 implies concave up and a local min
• As usual, D𝑎 < 0 implies concave down and a local max
• As usual, D𝑎 = 0 implies an inflection point (not a local extrema)



Recall: Least Squares (Unit 8)

• Minimizing 𝑟 " is referred to as least squares, and the resulting solution is 
referred to as the least squares solution (it’s really a least squares solution)
• A least squares solution is the unique solution when 𝑟 " = 0

• Minimizing 𝐷𝑟 " is referred to as weighted least squares

• 𝑟 " is minimized when 𝑟 "
" is minimized

• And 𝑟 "
" = 𝑟 ⋅ 𝑟 = 𝑏 − 𝐴𝑐 ⋅ 𝑏 − 𝐴𝑐 = 𝑐+𝐴+𝐴𝑐 − 2𝑏+𝐴𝑐 + 𝑏+𝑏 is minimized 

when 𝑐+𝐴+𝐴𝑐 − 2𝑏+𝐴𝑐 is minimized
• Thus, minimize 𝑐+𝐴+𝐴𝑐 − 2𝑏+𝐴𝑐
• For weighted least squares, minimize 𝑐+𝐴+𝐷"𝐴𝑐 − 2𝑏+𝐷"𝐴𝑐



Normal Equations

• 𝑐+𝐴+𝐷"𝐴𝑐 − 2𝑏+𝐷"𝐴𝑐 has the same minimum as  !
"
𝑐+𝐴+𝐷"𝐴𝑐 − 𝑏+𝐷"𝐴𝑐

• This is a quadratic form with symmetric 1𝐴 = 𝐴+𝐷"𝐴 and 4𝑏 = 𝐴+𝐷"𝑏

• The critical point is found from solving 1𝐴𝑐 = 4𝑏 or  𝐴+𝐷"𝐴𝑐 = 𝐴+𝐷"𝑏

• Weighted least squares defaults to ordinary least squares when 𝐷 = 𝐼
• For (unweighted) least squares, solve 𝐴+𝐴𝑐 = 𝐴+𝑏
• These are called the normal equations



Hessian

• Recall: 𝐴 is a tall (or square) full rank matrix with size 𝑚𝑥𝑛 where 𝑚 ≥ 𝑛
• The Hessian 𝐻 = 1𝐴 = 𝐴+𝐴 = 𝑉𝛴+𝑈+𝑈𝛴𝑉+ = 𝑉𝛴+𝛴𝑉+ = 𝑉𝛬𝑉+
• where 𝛬 = 𝛴+𝛴 is a size 𝑛𝑥𝑛 matrix of (nonzero) singular values squared

• 𝐻𝑉 = 𝑉𝛬 illustrates that 𝐻 has all positive eigenvalues (and so is SPD)
• That is, the critical point is indeed a minimum (as desired)

For weighted least squares:
• Nonzero diagonal elements in 𝐷 implies that 𝐷𝐴𝑐 = 0 if and only if 𝐴𝑐 = 0
• That is, a full column rank 𝐴 implies a full column rank 𝐷𝐴

• Then, the SVD of 𝐷𝐴 can be used to prove that 𝐻 = 𝐷𝐴 +(𝐷𝐴) is SPD


