Basic Optimization

Jacobian

• The Jacobian of $F(c) = \begin{pmatrix} F_{c} \\ F_{c} \\ F_{c} \end{pmatrix}$

$$\begin{pmatrix} F_1(c) \\ F_2(c) \\ \vdots \\ F_m(c) \end{pmatrix}$$
 has entries $J_{ik} = \frac{\partial F_i}{\partial c_k}(c)$

• Thus, the Jacobian $J(c) = F'(c) = \begin{pmatrix} \frac{\partial F_1}{\partial c_1}(c) & \frac{\partial F_1}{\partial c_2}(c) & \cdots & \frac{\partial F_1}{\partial c_n}(c) \\ \frac{\partial F_2}{\partial c_1}(c) & \frac{\partial F_2}{\partial c_2}(c) & \cdots & \frac{\partial F_2}{\partial c_n}(c) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial F_m}{\partial c_1}(c) & \frac{\partial F_m}{\partial c_2}(c) & \cdots & \frac{\partial F_m}{\partial c_n}(c) \end{pmatrix}$

Gradient

- Consider the scalar (output) function f(c) with multi-dimensional input c
- The Jacobian of f(c) is $J(c) = \left(\frac{\partial f}{\partial c_1}(c) \quad \frac{\partial f}{\partial c_2}(c) \quad \cdots \quad \frac{\partial f}{\partial c_n}(c)\right)$

• The gradient of f(c) is $\nabla f(c) = J^T(c) =$

$$\begin{pmatrix} \frac{\partial f}{\partial c_1}(c) \\ \frac{\partial f}{\partial c_2}(c) \\ \vdots \\ \frac{\partial f}{\partial c_n}(c) \end{pmatrix}$$

• In 1D, both J(c) and $\nabla f(c) = J^T(c)$ are the usual f'(c)

Critical Points

• To identify critical points of f(c), set the gradient to zero: $\nabla f(c) = 0$

• This is a system of equations:

$$\begin{pmatrix} \frac{\partial f}{\partial c_1}(c) \\ \frac{\partial f}{\partial c_2}(c) \\ \vdots \\ \frac{\partial f}{\partial c_n}(c) \end{pmatrix} = 0 \text{ or } \begin{pmatrix} \frac{\partial f}{\partial c_1}(c) = 0 \\ \frac{\partial f}{\partial c_2}(c) = 0 \\ \vdots \\ \frac{\partial f}{\partial c_n}(c) = 0 \end{pmatrix}$$

• Any c that simultaneously solves all the equations is a critical point

• In 1D, this is the usual f'(c) = 0

Jacobian of the Gradient

• Taking the Jacobian of the column vector gradient gives:

• The
$$J(\nabla f(c)) = \begin{pmatrix} \frac{\partial^2 f}{\partial c_1 \partial c_1}(c) & \frac{\partial^2 f}{\partial c_2 \partial c_1}(c) & \cdots & \frac{\partial^2 f}{\partial c_n \partial c_1}(c) \\ \frac{\partial^2 f}{\partial c_1 \partial c_2}(c) & \frac{\partial^2 f}{\partial c_2 \partial c_2}(c) & \cdots & \frac{\partial^2 f}{\partial c_n \partial c_2}(c) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial c_1 \partial c_n}(c) & \frac{\partial^2 f}{\partial c_2 \partial c_n}(c) & \cdots & \frac{\partial^2 f}{\partial c_n \partial c_n}(c) \end{pmatrix}$$

• Note:
$$\frac{\partial^2 f}{\partial c_2 \partial c_1} = \frac{\partial}{\partial c_2} \left(\frac{\partial f}{\partial c_1} \right) = f_{c_1 c_2}$$

Hessian

• The Hessian of f(c) is $H(c) = J(\nabla f(c))^T$ and has entries $H_{ik} = \frac{\partial f}{\partial c_i \partial c_k}(c)$

- H(c) is symmetric, when the order of differentiation doesn't matter
- In 1D, this is the usual f''(c)

Differential Forms

- Vector valued function: dF(c) = J(F(c))dc
- Substitute ∇f for F to get: $d\nabla f(c) = J(\nabla f(c))dc = H^T(c)dc$
- Scalar valued function: df(c) = J(f(c))dc
- Take the transpose: $df(c) = dc^T \nabla f(c)$
- Take (another) differential: $d^2 f(c) = J(dc^T \nabla f(c)) dc$
- Some hand waving: $d^2 f(c) = dc^T H^T(c) dc = dc \cdot H^T(c) dc$

Classifying Critical Points

- Given a critical point c^* , i.e. with $\nabla f(c^*) = 0$, the Hessian is used to classify it
- If $H(c^*)$ is positive definite, then c^* is a local minimum
- If $H(c^*)$ is <u>negative definite</u>, then c^* is a <u>local maximum</u>
- Otherwise, $H(c^*)$ is indefinite, and c^* is a saddle point

Classifying Critical Points (in 1D)

- In 1D, given critical point c^{*}, i.e. with ∇f(c^{*}) = f'(c^{*}) = 0, the Hessian is used to classify it
- In 1D, $H(c^*) = (f''(c^*))$ is a size 1x1 diagonal matrix with eigenvalue $f''(c^*)$
- If H(c*) is positive definite with eigenvalue f''(c*) > 0, then c* is a local minimum
 As usual, f''(c*) > 0 implies concave up and a local min
- If $H(c^*)$ is <u>negative definite</u> with eigenvalue $f''(c^*) < 0$, then c^* is a <u>local maximum</u>
 - As usual, $f''(c^*) < 0$ implies concave down and a local max
- Otherwise, $H(c^*)$ is indefinite with eigenvalue $f''(c^*) = 0$, and c^* is a saddle point
 - As usual, $f''(c^*) = 0$ implies an inflection point (not a local extrema)

Quadratic Form

- The <u>quadratic form</u> of a square matrix \tilde{A} is $f(c) = \frac{1}{2}c^T\tilde{A}c \tilde{b}^Tc + \tilde{c}$ • In 1D, $f(c) = \frac{1}{2}\tilde{a}c^2 - \tilde{b}c + \tilde{c}$
- Minimize f(c) by (first) finding critical points where $\nabla f(c) = 0$
- Note $\nabla f(c) = \frac{1}{2}\tilde{A}c + \frac{1}{2}\tilde{A}^Tc \tilde{b}$, since $J(c^Tv) = J(v^Tc) = v^T$ (the gradient is v)
 - Solve the <u>symmetric</u> system $\frac{1}{2}(\tilde{A} + \tilde{A}^T)c = \tilde{b}$ to find critical points
- When \tilde{A} is symmetric, $\nabla f(c) = \tilde{A}c \tilde{b} = 0$ is satisfied when $\tilde{A}c = \tilde{b}$
 - In 1D, the critical point is on the line of symmetry $\tilde{c} = \frac{b}{\tilde{a}}$
- That is, solve $\tilde{A}c = \tilde{b}$ to find the critical point

Quadratic Form

- The Hessian of f(c) is $H = \frac{1}{2}(\tilde{A}^T + \tilde{A})$ or just \tilde{A} when \tilde{A} is symmetric
- When \tilde{A} is SPD, the solution to $\tilde{A}c = \tilde{b}$ is a minimum
- When \tilde{A} is symmetric negative definite, the solution to $\tilde{A}c = \tilde{b}$ is a maximum
- When \tilde{A} is indefinite, the solution to $\tilde{A}c = \tilde{b}$ is a saddle point
- In 1D, $H = (\tilde{a})$ is a size 1x1 diagonal matrix with eigenvalue \tilde{a}
- As usual, $\tilde{a} > 0$ implies concave up and a local min
- As usual, $\tilde{a} < 0$ implies concave down and a local max
- As usual, $\tilde{a} = 0$ implies an inflection point (not a local extrema)

Recall: Least Squares (Unit 8)

- Minimizing $||r||_2$ is referred to as <u>least squares</u>, and the resulting solution is referred to as the least squares solution (it's really a least squares solution)
 - A least squares solution is the unique solution when $||r||_2 = 0$
- Minimizing $||Dr||_2$ is referred to as weighted least squares
- $||r||_2$ is minimized when $||r||_2^2$ is minimized
- And $||r||_2^2 = r \cdot r = (b Ac) \cdot (b Ac) = c^T A^T Ac 2b^T Ac + b^T b$ is minimized when $c^T A^T Ac 2b^T Ac$ is minimized
- Thus, minimize $c^T A^T A c 2b^T A c$
- For weighted least squares, minimize $c^T A^T D^2 A c 2b^T D^2 A c$

Normal Equations

- $c^T A^T D^2 A c 2b^T D^2 A c$ has the same minimum as $\frac{1}{2} c^T A^T D^2 A c b^T D^2 A c$
- This is a quadratic form with <u>symmetric</u> $\tilde{A} = A^T D^2 A$ and $\tilde{b} = A^T D^2 b$
- The <u>critical point</u> is found from solving $\tilde{A}c = \tilde{b}$ or $A^T D^2 A c = A^T D^2 b$
- Weighted least squares defaults to ordinary least squares when D = I
- For (unweighted) least squares, solve $A^T A c = A^T b$
- These are called the normal equations

Hessian

- Recall: A is a tall (or square) full rank matrix with size mxn where $m \ge n$
- The Hessian $H = \tilde{A} = A^T A = V \Sigma^T U^T U \Sigma V^T = V \Sigma^T \Sigma V^T = V \Lambda V^T$

• where $\Lambda = \Sigma^T \Sigma$ is a size nxn matrix of (nonzero) singular values squared

- $HV = V\Lambda$ illustrates that H has all positive eigenvalues (and so is SPD)
- That is, the critical point is indeed a minimum (as desired)

For weighted least squares:

- Nonzero diagonal elements in D implies that DAc = 0 if and only if Ac = 0
 - That is, a full column rank A implies a full column rank DA
- Then, the SVD of DA can be used to prove that $H = (DA)^T (DA)$ is SPD