Computing Derivatives



Part [| Roadmap

e Part | — Linear Algebra (units 1-12) Ac = b

_ ; line search
inearize

|
* Part Il — Optimization (units 13-20) /

* (units 13-16) Optimization -> Nonlinear Equations -> 1D roots/minima -«
* (units 17-18) Computing/Avoiding Derivatives

* (unit 19) Hack 1.0: “I give up” H = I and J is mostly 0 (descent methods)

e (unit 20) Hack 2.0: ”It’s an ODE!?” (adaptive learning rate and momentum)



Smoothness

* Discontinuous functions cannot be differentiated
* Even methods that don’t require derivatives struggle when functions are discontinuous

e Continuous functions may have kinks (discontinuities in derivatives)

* Discontinuous derivatives can cause methods that depend on derivatives to fail, since
function behavior cannot be adequately predicted from one side of the kink to the other

* Typically, functions need to be “smooth enough”, which has varying meaning
depending on the approach

e Specialty approaches exist for special classes of functions, e.g. linear algebra,
linear programming, convex optimization, second order cone program (SOCP),
etc.

* Nonlinear Systems/Optimization are more difficult, and best practices/techniques often do
not exist




Biological Neurons (towards “real” Al)

* The aim is to mimic biological (typically human) neural networks and learning

* Biological neurons are “all or none”, which motivates similar strategies in artificial
neural networks
* This leads to a discontinuous function, with an identically zero derivative everywhere else
e Disastrous for optimization!

* Biological neurons fire with increased frequency for stronger signals
* This leads to a piecewise constant and discontinuous derivative
* Problematic for optimization!

* Smoothing allows optimization to “work”, i.e. allows one to minimize the loss to
find the parameters/coefficients for the network architecture



Heaviside Function

*H(x) =1forx > 0,and H(x) = 0forx <0
* Motivated by biological neurons being “all or none”

* Has a discontinuity at 0 and an identically zero derivative everywhere else

N

4

3

N\’




Sigmoid Function

1

1+e=%

* Continuous and monotonically increasing, although the derivative is close to zero
further away from x = 0

* Any smoothed Heaviside function, e.g. S(x) = (there are many options)

N\ %4




Rectifier Functions

* R(x) = max(x, 0) or similar functions which are continuous and have increasing values

* Motivated by biological neurons firing with increased frequency for stronger signals

* Piecewise constant and discontinuous derivative causes issues with optimization

N

4

%4




Softplus Function

* Softplus function SP(x) = log(1 + e*) smooths the discontinuous derivative
typical of rectifier functions




Leaky Rectifier Function

* Modifies the negative part of a rectifier function to also have a positive slope
instead of being set to zero

e Can be smoothed (as well)




Arg/Soft Max

e Arg Max returns 1 for the largest argument and O for the other arguments
*E.g.(199,1) - (0,1), (1,.99) — (1,0), etc.
* Highly discontinuous!

e*1 e*X2 )

] I . T
Soft Max is a smoothed version, e.g. (x4, x;) (ex1+ex2 ) X1t eX

* This is a smooth function of the arguments, differentiable, etc.

* Variants/weightings exist to make it closer/further from Arg Max (while
preserving differentiability)



Binary Classification

* Training data (x;, y;) where the y; = +1 are binary class labels

* Find plane A’ (x — x,) = 0 that separates the data between the two class labels
(11 is the unit normal and x, is a point on the plane)

* The closest x; on each side of the plane are called support vectors

* If the separating plane is equidistant between the support vectors, then they lie
on parallel planes: A’ (x — x,) = +€ (where € is the margin)

* Dividing by € to normalize gives ¢’ (x — x,) = +1 where ¢ points in the normal
direction (but is not unit length); then, maximizing the margin € is equivalent to
minimizing ||c||,



Binary Classification

* Minimize f(c) = %CTC subject to inequality constraints:
e ¢l (x; —x,) = 1wheny; =1,and ¢’ (x; — x,) < —1wheny; = —1
e Can combine these into y;c’ (x; — x,) = 1 for every data point
e Alternatively, y;(c"x; — b) = 1 with a scalar unknown b = ¢’x,

* When approached via unconstrained optimization, Heaviside functions can be
used to incorporate the constraints into the cost function
* Subsequently smoothing those Heaviside functions is called soft-margin

* Note: new data is classified (via inference) based on the sign of ¢'x,,,,, — b



(Inequality) Constrained Optimization

* Minimize f(c) subject to §(c) = 0 (or §(c) > 0)
* Create a penalty term —H(—gi(c))gi(c), which is nonzero only when g;(c) < 0

* This penalty term is minimized by forcing negative g;(c) towards zero (as desired)

* Given a diagonal matrix D of (positive) weights indicating the relative importance
of various constraints, unconstrained optimization can be used to minimize

F AT N A AT N A
f(c)—X2;H (—ei Dg(c)) é; Dg(c)
* This requires differentiating the non-smooth Heaviside function
* Smoothing the Heaviside function makes the modified cost function differentiable




Symbolic Differentiation

 When a function is known in closed form, it can be differentiated by hand

e Software packages such as Mathematica can aid in symbolic differentiation (and
subsequent simplification)

* Some benefits of knowing the closed form derivative:
* Provides a better understanding of the underlying problem
* Enables well thought out smoothing/regularization
* Allows one to implement more efficient code
e Subsequently allows access to higher derivatives
* Some of the aforementioned benefits enable the use of better solvers
* Helps to write/maintain code with less bugs
* Etc.




Example

e Suppose a code has the following functons:
 f(t) =t* —4with f'(t) = 2t,and g(t) =t — 2 with g'(t) = 1

* Suppose another part of the code combines these functions:
. h(t) — @With h’(t) it g f'®-f()g' (t)

g(t) (9®)°
f2y i 0 / g2)f'(2)-f(2)g'(2) _ 0-4-0-1
* Then h(2) =—==-and h'(2) = =
en h(2) = 225 = Sand 1'(2) iy -
. Ad(di;1g a small € > 0 to the denominators (to avoid division by zero) gives h(2) = 0 and
=1

* Adding a small € > 0 to denominators is often done whenever the denominators are small,
making h(t) = 0 and h'(t) = 0 fort = 2 as well

» Of course, h(t) =t + 2 is a straight line with h(2) = 4and h'(t) =1
everywhere



Symbolic Differentiation of Code

* Sometimes a function is not analytically known and/or merely represents the
output of some source code

* But, parts of the code may have known derivatives, and those known derivatives
can be utilized/leveraged via the mathematical rules for differentiation

* Moreover, when parts of the code are always used consecutively, they can be
merged; subsequently, merged code with known derivatives in each part can
often have the derivative treatment simplified for accuracy/robustness/efficiency



Differentiate the Right Thing

e Consider an iterative solver (e.g. CG, Minres, etc.) that solves Ac = b to find c given b

 Sometimes the code is enormous, complicated, confusing, a black box, etc. (basically
impenetrable)

. |thS tgmptmg to consider some of the code bases that claim to differentiate such chunks
of code

* Sometimes these approaches work, and the answers are reasonable

e But, it is often difficult to know whether or not computational inaccuracies (as discussed in this
cIass) are having an adverse effect on such a black box approach

dc
e Alternatively, when invertible: ¢ = A™1b and k = dy; where dy; isan entryin A™1
* A similar approach can be taken for A+ which can be ‘estimated robustly via PCA, the Power
Method, etc.

* The derivative is independent of the iterative solver (CG, Minres, etc.) and the errors
that might accumulate within the iterative solver due to poor condltlonlng

* More recently, this sort of approach is being referred to as an implicit layer



The Used Car Salesman

* Beware of the claim: it is good to be able to use something without
understanding it

* The claim is often true, and many of us enjoy driving our cars without
understanding much of what is under the hood

* However, those who design cars, manufacture cars, repair cars, etc. benefit
greatly from understanding as much as possible about them (and the rest of us
benefit enormously from their expertise)

* Though, admittedly, there are those in the car business, such as those who sell
used cars, who legitimately don’t require any real knowledge/expertise

* The question is: what kind of computer scientist do you want to be?



Oversimplified Thinking
* Beware of claims that drastically oversimplify

e E.g., some say that code is very simple and merely consists of simple operations
like add/subtract/multiply/divide that are easily differentiated

* However, in reality, even the simple z = x + y has subtleties that can matter
* E.g. the computer actually executes z = round(x + y)

* Too many claim that issues they have not carefully considered don’t matter in
practice; meanwhile, many state-of-the-art practices in ML/DL are not well
understood in the first place (leaving one to question these sorts of claims)



Finite Differences

* Derivatives can be approximated by various formulas, similar to how the Secant
method was derived from Newton’s method

* Given a small perturbation h > 0, Taylor expansions can be manipulated to write:

* Forward Difference: g'(t) = e Pl O(h), 1t order accurate

h
* Backward Difference: g'(t) = g(t)_i(t_h) + 0(h), 1%t order accurate
e Central Difference: g'(t) = g(Hh)z_hg(t_h) + 0(h?%), 2" order accurate
e Second Derivative: g''(t) = g(Hh)_zi(zt)Jrg(t_h) + 0(h?%), 2" order accurate

 These approximations can be evaluated even when g(t) is not known precisely,
but merely represents the output of some code with input t



Finite Differences (Drawbacks)

* Finite Differences only give an approximation to the derivative, and contain
truncation errors related to the perturbation size h

* One has to reason about the effects that truncation error (and the size of i) have
on other aspects of the code

* If the code is very long and complex, the overall effects of truncation errors may
be unclear

e Still, finite difference methods have had a broad positive impact in computational
science!



Automatic Differentiation

In machine learning, this is often referred to as Back Propagation

For every (potentially vector valued) function F(Cinput) written into the code, an analytically

. : : . OF : :
correct companion function for the Jacobian matrix = (Cinput) is also written

! oF
Then when evaluating F(Cinput), one can also evaluate = (Cinput)

0F p . o et
* Of course, = (cinput) contains roundoff errors based on machine precision (and conditioning, etc.)

* But it does not contain the much larger truncation errors present in finite differencing

Code can be considered in chunks, which combine together various functions via
arithmetic/compositional rules

* Analytic differentiation has its own set of rules (linearity, product rule, quotient rule, chain rule, etc.) that can
be used to assemble the derivative (evaluated at ¢;y,¢) for the code chunk

Roundoff errors will accumulate, of course, and the resulting error has the potential to be
catastrophic (this is typically even worse for the much larger truncation errors)



Second Derivatives

* If Cinpuyt is size n and F(cmput) is size m, the Jacobian matrlx (cmput) is size mxn
* The Hessian of second derivatives is size mxnxn
* Recall: m = 1 for optimization, i.e. for f(cinput)

* Writing automatic differentiation functions for all possible second derivatives can be
difficult/tedious

» Storing Hessians for all second derivatives can be unwieldy/intractable

* Roundoff error accumulation can be an even bigger problem for second derivatives, and
the resulting errors are typically even more likely to lead to adverse effects

e Additional smoothness is required for second derivatives

 Some of these issues are problems for any method that considers second derivatives
(not specific to an automatic differentiation approach)



Dropout

* One idea for combating overfitting is to train several different network architectures on
the same data, inference them all, and average the result (model averaging)

* This can be costly, especially if there are many networks

* Dropout is a “hacky” approach to achieving a function averaged over multiple network
architectures (though Google did patent it™)

* The idea is to simply ignore parts of the code with some probability when training the
network, mimicking a perturbed network architecture

e Although this can be seen as computing correct derivatives on perturbed
functions/architectures, it can also equivalently be seen as adding uncertainty to the
derivative computation

* That is, instead of regularization via model averaging, it can be seen as creating a
network robust to errors in the derivatives




Function Layers

* Many complex processes work in a pipeline with many function layers
* Each layer completes a tasks on its inputs X; to create outputs X; 4
* Each layer may depend on parameters (;

* There may be a known/desired output X4, .+ to compare the final result to

Cl CZ C3

params l params lparams

out

in out in in out
X1 —— L X C) —— X —— fL,(Xy;6) —— X3 » f3(X3;C3) —— Xy

f(XAL) = ”X4 s Xtarget”



Function Layers (an example)

LAYER 1
* Input: animation controls

* Function: linear blend shapes, nonlinear skinning,
qguasistatic physics simulation, etc. to deform a face

e Parameters: lots of hand tuned or known
parameters including shape libraries, etc.

e Qutput: 3D vertex positions of a triangle mesh




Function Layers (an example)

LAYER 2
* Input: 3D vertex positions of a triangle mesh
* Function: scanline renderer or ray tracer

 Parameters: lots of hand tuned or known
parameters for material models, lighting and
shading, textures, etc.

e Qutput: RGB colors for pixels (a 2D image)




Function Layers (an example)

LAYER 3
* Input: RGB colors for pixels (a 2D image)
* Function: (neural) facial landmark detector

e Parameters: parameters for the neural network
architecture, determined by training the network
to match hand labeled data

e Qutput: 2D locations of landmarks on the image




Function Layers (an example)

TARGET

* Run a landmark detector on a photograph of the
individual to obtain 2D landmark locations
(alternatively, can label by hand)

* The goal is to have the 2D landmarks output from
the complex multi-layered function (on the prior
three slides) match the 2D landmarks on the
photograph




Function Layers (Example)

* Modifying animation controls changes the triangulated surface which changes the
rendered pixels in the 2D image which changes the network’s determination of the
landmarks locations

 When the two sets of landmarks agree, the animation controls give some indication of
what the person in the photograph was doing




Classical Optimization

* Find the input X; that minimizes f (X,)

df (X4) i 0f(Xy) 0X4 0X3 09X, . df (Xy) 0f3(X3,C3) 0f2(X2,C2) 0f1(X1,C1)
X, T, AT ooy i D o e X, X,

* Parameters are considered fixed/constant

e Chain rule:

Cl CZ C3

params l params lparams

out

in out in in out
Xy st P& Gl w2 Ko e o (X0 6o ) = s » f3(X3;C3) — X,

f(X4) = ||X4 s Xtarget”



Network Training

* Train network f, by finding parameters C, that minimize f(X4)
df(Xy) i 0f(Xy) 0Xq 0X3 _ 0f(X4) 0f3(X3,C3) 0f2(X2,C2)

e Chain rule: =
aC, 0X, 0X30C, 90X, 0Xs3 aC,
Cl CZ C3
params l params lparams

out

in out in in out
Xi — (X1 6G) —— Xy — (X3C) —— Xz — f3(X3;C3) —— 44

f(X4) = ||X4 s Xtarget”



Network Training

e Any preprocess to the network does not require differentiability
* The network itself only requires differentiability with respect to its parameters

* Any postprocess to the network requires input/output differentiability, but does
not require differentiability with respect to its parameters

C; G; X

lpmams meams

in out in out
O g fz% Codrri=tifasrry f3(X3;§6 et Ay

f(XAL) = ||X4 s Xtarget”



